Files
gen_data_curobo/benchmark/curobo_benchmark.py
Balakumar Sundaralingam 58958bbcce update to 0.6.2
2023-12-15 02:01:33 -08:00

813 lines
31 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Standard Library
from copy import deepcopy
from typing import Optional
# Third Party
import numpy as np
import torch
from tqdm import tqdm
# CuRobo
from curobo.geom.sdf.world import CollisionCheckerType, WorldConfig
from curobo.geom.types import Mesh
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import RobotConfig
from curobo.types.state import JointState
from curobo.util.logger import setup_curobo_logger
from curobo.util_file import (
get_assets_path,
get_robot_configs_path,
get_world_configs_path,
join_path,
load_yaml,
write_yaml,
)
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
# torch.set_num_threads(8)
# torch.use_deterministic_algorithms(True)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# torch.backends.cuda.matmul.allow_tf32 = False
# torch.backends.cudnn.allow_tf32 = False
# torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
np.random.seed(0)
# Standard Library
import argparse
import warnings
from typing import List, Optional
# Third Party
from metrics import CuroboGroupMetrics, CuroboMetrics
from robometrics.datasets import demo_raw, motion_benchmaker_raw, mpinets_raw
def plot_cost_iteration(cost: torch.Tensor, save_path="cost", title="", log_scale=False):
# Third Party
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(5, 4))
cost = cost.cpu().numpy()
# save to csv:
np.savetxt(save_path + ".csv", cost, delimiter=",")
# if cost.shape[0] > 1:
colormap = plt.cm.winter
plt.gca().set_prop_cycle(plt.cycler("color", colormap(np.linspace(0, 1, cost.shape[0]))))
x = [i for i in range(cost.shape[-1])]
for i in range(cost.shape[0]):
plt.plot(x, cost[i], label="seed_" + str(i))
plt.tight_layout()
# plt.title(title)
plt.xlabel("iteration")
plt.ylabel("cost")
if log_scale:
plt.yscale("log")
plt.grid()
# plt.legend()
plt.tight_layout()
plt.savefig(save_path + ".pdf")
plt.close()
def plot_traj(act_seq: JointState, dt=0.25, title="", save_path="plot.png", sma_filter=False):
# Third Party
import matplotlib.pyplot as plt
fig, ax = plt.subplots(4, 1, figsize=(5, 8), sharex=True)
t_steps = np.linspace(0, act_seq.position.shape[0] * dt, act_seq.position.shape[0])
# compute acceleration from finite difference of velocity:
# act_seq.acceleration = (torch.roll(act_seq.velocity, -1, 0) - act_seq.velocity) / dt
# act_seq.acceleration = ( act_seq.velocity - torch.roll(act_seq.velocity, 1, 0)) / dt
# act_seq.acceleration[0,:] = 0.0
# act_seq.jerk = ( act_seq.acceleration - torch.roll(act_seq.acceleration, 1, 0)) / dt
# act_seq.jerk[0,:] = 0.0
if sma_filter:
kernel = 5
sma = torch.nn.AvgPool1d(kernel_size=kernel, stride=1, padding=2, ceil_mode=False).cuda()
# act_seq.jerk = sma(act_seq.jerk)
# act_seq.acceleration[-1,:] = 0.0
for i in range(act_seq.position.shape[-1]):
ax[0].plot(t_steps, act_seq.position[:, i].cpu(), "-", label=str(i))
# act_seq.velocity[1:-1, i] = sma(act_seq.velocity[:,i].view(1,-1)).squeeze()#@[1:-2]
ax[1].plot(t_steps[: act_seq.velocity.shape[0]], act_seq.velocity[:, i].cpu(), "-")
if sma_filter:
act_seq.acceleration[:, i] = sma(
act_seq.acceleration[:, i].view(1, -1)
).squeeze() # @[1:-2]
ax[2].plot(t_steps[: act_seq.acceleration.shape[0]], act_seq.acceleration[:, i].cpu(), "-")
if sma_filter:
act_seq.jerk[:, i] = sma(act_seq.jerk[:, i].view(1, -1)).squeeze() # @[1:-2]\
ax[3].plot(t_steps[: act_seq.jerk.shape[0]], act_seq.jerk[:, i].cpu(), "-")
ax[0].set_title(title + " dt=" + "{:.3f}".format(dt))
ax[3].set_xlabel("Time(s)")
ax[3].set_ylabel("Jerk rad. s$^{-3}$")
ax[0].set_ylabel("Position rad.")
ax[1].set_ylabel("Velocity rad. s$^{-1}$")
ax[2].set_ylabel("Acceleration rad. s$^{-2}$")
ax[0].grid()
ax[1].grid()
ax[2].grid()
ax[3].grid()
# ax[0].legend(loc="upper right")
ax[0].legend(bbox_to_anchor=(0.5, 1.6), loc="upper center", ncol=4)
plt.tight_layout()
plt.savefig(save_path)
plt.close()
# plt.legend()
def load_curobo(
n_cubes: int,
enable_debug: bool = False,
tsteps: int = 30,
trajopt_seeds: int = 4,
mpinets: bool = False,
graph_mode: bool = True,
mesh_mode: bool = False,
cuda_graph: bool = True,
collision_buffer: float = -0.01,
finetune_dt_scale: float = 0.9,
collision_activation_distance: float = 0.02,
args=None,
parallel_finetune=False,
):
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
robot_cfg["kinematics"]["collision_sphere_buffer"] = collision_buffer
robot_cfg["kinematics"]["collision_spheres"] = "spheres/franka_mesh.yml"
robot_cfg["kinematics"]["collision_link_names"].remove("attached_object")
robot_cfg["kinematics"]["ee_link"] = "panda_hand"
# del robot_cfg["kinematics"]
ik_seeds = 30 # 500
if graph_mode:
trajopt_seeds = 4
if trajopt_seeds >= 14:
ik_seeds = max(100, trajopt_seeds * 2)
if mpinets:
robot_cfg["kinematics"]["lock_joints"] = {
"panda_finger_joint1": 0.025,
"panda_finger_joint2": 0.025,
}
world_cfg = WorldConfig.from_dict(
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
).get_obb_world()
interpolation_steps = 2000
c_checker = CollisionCheckerType.PRIMITIVE
c_cache = {"obb": n_cubes}
if mesh_mode:
c_checker = CollisionCheckerType.MESH
c_cache = {"mesh": n_cubes}
world_cfg = world_cfg.get_mesh_world()
if graph_mode:
interpolation_steps = 100
robot_cfg_instance = RobotConfig.from_dict(robot_cfg, tensor_args=TensorDeviceType())
K = robot_cfg_instance.kinematics.kinematics_config.joint_limits
K.position[0, :] -= 0.2
K.position[1, :] += 0.2
finetune_iters = None
grad_iters = None
if args.report_edition:
finetune_iters = 200
grad_iters = 125
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_cfg_instance,
world_cfg,
finetune_trajopt_iters=finetune_iters,
grad_trajopt_iters=grad_iters,
trajopt_tsteps=tsteps,
collision_checker_type=c_checker,
use_cuda_graph=cuda_graph,
collision_cache=c_cache,
position_threshold=0.005, # 5 mm
rotation_threshold=0.05,
num_ik_seeds=ik_seeds,
num_graph_seeds=trajopt_seeds,
num_trajopt_seeds=trajopt_seeds,
interpolation_dt=0.025,
store_ik_debug=enable_debug,
store_trajopt_debug=enable_debug,
interpolation_steps=interpolation_steps,
collision_activation_distance=collision_activation_distance,
trajopt_dt=0.25,
finetune_dt_scale=finetune_dt_scale,
maximum_trajectory_dt=0.1,
)
mg = MotionGen(motion_gen_config)
mg.warmup(enable_graph=True, warmup_js_trajopt=False, parallel_finetune=parallel_finetune)
return mg, robot_cfg
def benchmark_mb(
write_usd=False,
save_log=False,
write_plot=False,
write_benchmark=False,
plot_cost=False,
override_tsteps: Optional[int] = None,
graph_mode=False,
args=None,
):
# load dataset:
force_graph = False
interpolation_dt = 0.02
# mpinets_data = True
# if mpinets_data:
file_paths = [motion_benchmaker_raw, mpinets_raw][:] # [1:]
if args.demo:
file_paths = [demo_raw]
# else:22
# file_paths = [get_mb_dataset_path()][:1]
enable_debug = save_log or plot_cost
all_files = []
og_tsteps = 32
if override_tsteps is not None:
og_tsteps = override_tsteps
og_finetune_dt_scale = 0.9
og_trajopt_seeds = 12
og_parallel_finetune = not args.jetson
og_collision_activation_distance = 0.01
for file_path in file_paths:
all_groups = []
mpinets_data = False
problems = file_path()
if "dresser_task_oriented" in list(problems.keys()):
mpinets_data = True
for key, v in tqdm(problems.items()):
finetune_dt_scale = og_finetune_dt_scale
force_graph = False
tsteps = og_tsteps
trajopt_seeds = og_trajopt_seeds
collision_activation_distance = og_collision_activation_distance
parallel_finetune = og_parallel_finetune
if "cage_panda" in key:
trajopt_seeds = 16
finetune_dt_scale = 0.95
collision_activation_distance = 0.01
parallel_finetune = True
if "table_under_pick_panda" in key:
tsteps = 44
trajopt_seeds = 24
finetune_dt_scale = 0.98
parallel_finetune = True
if "table_pick_panda" in key:
collision_activation_distance = 0.005
if "cubby_task_oriented" in key and "merged" not in key:
trajopt_seeds = 24
finetune_dt_scale = 0.95
collision_activation_distance = 0.015
parallel_finetune = True
if "dresser_task_oriented" in key:
trajopt_seeds = 24
# tsteps = 40
finetune_dt_scale = 0.95
collision_activation_distance = 0.01
parallel_finetune = True
if key in [
"tabletop_neutral_start",
"merged_cubby_neutral_start",
"merged_cubby_task_oriented",
"cubby_neutral_start",
"cubby_neutral_goal",
"dresser_neutral_start",
"tabletop_task_oriented",
]:
collision_activation_distance = 0.005
if key in ["dresser_neutral_goal"]:
trajopt_seeds = 24 # 24
tsteps = 36
collision_activation_distance = 0.005
scene_problems = problems[key]
n_cubes = check_problems(scene_problems)
mg, robot_cfg = load_curobo(
n_cubes,
enable_debug,
tsteps,
trajopt_seeds,
mpinets_data,
graph_mode,
args.mesh,
not args.disable_cuda_graph,
collision_buffer=args.collision_buffer,
finetune_dt_scale=finetune_dt_scale,
collision_activation_distance=collision_activation_distance,
args=args,
parallel_finetune=parallel_finetune,
)
m_list = []
i = 0
ik_fail = 0
for problem in tqdm(scene_problems, leave=False):
i += 1
if problem["collision_buffer_ik"] < 0.0:
# print("collision_ik:", problem["collision_buffer_ik"])
continue
plan_config = MotionGenPlanConfig(
max_attempts=100, # 100, # 00, # 00, # 100, # 00, # 000,#,00,#00, # 5000,
enable_graph_attempt=1,
disable_graph_attempt=20,
enable_finetune_trajopt=True,
partial_ik_opt=False,
enable_graph=graph_mode or force_graph,
timeout=60,
enable_opt=not graph_mode,
need_graph_success=force_graph,
parallel_finetune=parallel_finetune,
)
q_start = problem["start"]
pose = (
problem["goal_pose"]["position_xyz"] + problem["goal_pose"]["quaternion_wxyz"]
)
problem_name = "d_" + key + "_" + str(i)
# reset planner
mg.reset(reset_seed=False)
if args.mesh:
world = WorldConfig.from_dict(deepcopy(problem["obstacles"])).get_mesh_world()
else:
world = WorldConfig.from_dict(deepcopy(problem["obstacles"])).get_obb_world()
mg.world_coll_checker.clear_cache()
mg.update_world(world)
# from curobo.geom.types import Cuboid as curobo_Cuboid
# coll_mesh = mg.world_coll_checker.get_mesh_in_bounding_box(
# curobo_Cuboid(name="test", pose=[0, 0, 0, 1, 0, 0, 0], dims=[1, 1, 1]),
# voxel_size=0.01,
# )
#
# coll_mesh.save_as_mesh(problem_name + "debug_curobo.obj")
# exit()
# continue
# load obstacles
# run planner
start_state = JointState.from_position(mg.tensor_args.to_device([q_start]))
goal_pose = Pose.from_list(pose)
result = mg.plan_single(
start_state,
goal_pose,
plan_config,
)
if result.status == "IK Fail":
ik_fail += 1
# rint(plan_config.enable_graph, plan_config.enable_graph_attempt)
problem["solution"] = None
problem_name = key + "_" + str(i)
if write_usd or save_log:
# CuRobo
from curobo.util.usd_helper import UsdHelper
world.randomize_color(r=[0.5, 0.9], g=[0.2, 0.5], b=[0.0, 0.2])
gripper_mesh = Mesh(
name="robot_target_gripper",
file_path=join_path(
get_assets_path(),
"robot/franka_description/meshes/visual/hand.dae",
),
color=[0.0, 0.8, 0.1, 1.0],
pose=pose,
)
world.add_obstacle(gripper_mesh)
# get costs:
if plot_cost and not result.success.item():
dt = 0.5
problem_name = "approx_wolfe_p" + problem_name
if result.optimized_dt is not None:
dt = result.optimized_dt.item()
if "trajopt_result" in result.debug_info:
success = result.success.item()
traj_cost = (
# result.debug_info["trajopt_result"].debug_info["solver"]["cost"][0]
result.debug_info["trajopt_result"].debug_info["solver"]["cost"][-1]
)
# print(traj_cost[0])
traj_cost = torch.cat(traj_cost, dim=-1)
plot_cost_iteration(
traj_cost,
title=problem_name + "_" + str(success) + "_" + str(dt),
save_path=join_path("benchmark/log/plot/", problem_name + "_cost"),
log_scale=False,
)
if "finetune_trajopt_result" in result.debug_info:
traj_cost = result.debug_info["finetune_trajopt_result"].debug_info[
"solver"
]["cost"][0]
traj_cost = torch.cat(traj_cost, dim=-1)
plot_cost_iteration(
traj_cost,
title=problem_name + "_" + str(success) + "_" + str(dt),
save_path=join_path(
"benchmark/log/plot/", problem_name + "_ft_cost"
),
log_scale=False,
)
if result.success.item():
# print("GT: ", result.graph_time)
q_traj = result.get_interpolated_plan()
problem["goal_ik"] = q_traj.position.cpu().squeeze().numpy()[-1, :].tolist()
problem["solution"] = {
"position": result.get_interpolated_plan()
.position.cpu()
.squeeze()
.numpy()
.tolist(),
"velocity": result.get_interpolated_plan()
.velocity.cpu()
.squeeze()
.numpy()
.tolist(),
"acceleration": result.get_interpolated_plan()
.acceleration.cpu()
.squeeze()
.numpy()
.tolist(),
"jerk": result.get_interpolated_plan()
.jerk.cpu()
.squeeze()
.numpy()
.tolist(),
"dt": interpolation_dt,
}
# print(problem["solution"]["position"])
# exit()
debug = {
"used_graph": result.used_graph,
"attempts": result.attempts,
"ik_time": result.ik_time,
"graph_time": result.graph_time,
"trajopt_time": result.trajopt_time,
"total_time": result.total_time,
"solve_time": result.solve_time,
"opt_traj": {
"position": result.optimized_plan.position.cpu()
.squeeze()
.numpy()
.tolist(),
"velocity": result.optimized_plan.velocity.cpu()
.squeeze()
.numpy()
.tolist(),
"acceleration": result.optimized_plan.acceleration.cpu()
.squeeze()
.numpy()
.tolist(),
"jerk": result.optimized_plan.jerk.cpu().squeeze().numpy().tolist(),
"dt": result.optimized_dt.item(),
},
"valid_query": result.valid_query,
}
problem["solution_debug"] = debug
# print(
# "T: ",
# result.motion_time.item(),
# result.optimized_dt.item(),
# (len(problem["solution"]["position"]) - 1 ) * result.interpolation_dt,
# result.interpolation_dt,
# )
# exit()
reached_pose = mg.compute_kinematics(result.optimized_plan[-1]).ee_pose
rot_error = goal_pose.angular_distance(reached_pose) * 100.0
if args.graph:
solve_time = result.graph_time
else:
solve_time = result.solve_time
# compute path length:
path_length = torch.sum(
torch.linalg.norm(
(
torch.roll(result.optimized_plan.position, -1, dims=-2)
- result.optimized_plan.position
)[..., :-1, :],
dim=-1,
)
).item()
current_metrics = CuroboMetrics(
skip=False,
success=True,
time=result.total_time,
collision=False,
joint_limit_violation=False,
self_collision=False,
position_error=result.position_error.item() * 1000.0,
orientation_error=rot_error.item(),
eef_position_path_length=10,
eef_orientation_path_length=10,
attempts=result.attempts,
motion_time=result.motion_time.item(),
solve_time=solve_time,
cspace_path_length=path_length,
)
if write_usd:
# CuRobo
q_traj = result.get_interpolated_plan()
UsdHelper.write_trajectory_animation_with_robot_usd(
robot_cfg,
world,
start_state,
q_traj,
dt=result.interpolation_dt,
save_path=join_path("benchmark/log/usd/", problem_name) + ".usd",
interpolation_steps=1,
write_robot_usd_path="benchmark/log/usd/assets/",
robot_usd_local_reference="assets/",
base_frame="/world_" + problem_name,
visualize_robot_spheres=False,
flatten_usd=False,
)
if write_plot: # and result.optimized_dt.item() > 0.06:
problem_name = problem_name
plot_traj(
result.optimized_plan,
result.optimized_dt.item(),
# result.get_interpolated_plan(),
# result.interpolation_dt,
title=problem_name,
save_path=join_path("benchmark/log/plot/", problem_name + ".png"),
)
# plot_traj(
# # result.optimized_plan,
# # result.optimized_dt.item(),
# result.get_interpolated_plan(),
# result.interpolation_dt,
# title=problem_name,
# save_path=join_path("benchmark/log/plot/", problem_name + "_int.pdf"),
# )
# exit()
m_list.append(current_metrics)
all_groups.append(current_metrics)
elif result.valid_query:
current_metrics = CuroboMetrics()
debug = {
"used_graph": result.used_graph,
"attempts": result.attempts,
"ik_time": result.ik_time,
"graph_time": result.graph_time,
"trajopt_time": result.trajopt_time,
"total_time": result.total_time,
"solve_time": result.solve_time,
"status": result.status,
"valid_query": result.valid_query,
}
problem["solution_debug"] = debug
m_list.append(current_metrics)
all_groups.append(current_metrics)
else:
# print("invalid: " + problem_name)
debug = {
"used_graph": result.used_graph,
"attempts": result.attempts,
"ik_time": result.ik_time,
"graph_time": result.graph_time,
"trajopt_time": result.trajopt_time,
"total_time": result.total_time,
"solve_time": result.solve_time,
"status": result.status,
"valid_query": result.valid_query,
}
problem["solution_debug"] = debug
if False:
world.save_world_as_mesh(problem_name + ".obj")
q_traj = start_state # .unsqueeze(0)
# CuRobo
from curobo.util.usd_helper import UsdHelper
UsdHelper.write_trajectory_animation_with_robot_usd(
robot_cfg,
world,
start_state,
q_traj,
dt=result.interpolation_dt,
save_path=join_path("benchmark/log/usd/", problem_name) + ".usd",
interpolation_steps=1,
write_robot_usd_path="benchmark/log/usd/assets/",
robot_usd_local_reference="assets/",
base_frame="/world_" + problem_name,
visualize_robot_spheres=True,
)
if save_log and not result.success.item():
# print("save log")
UsdHelper.write_motion_gen_log(
result,
robot_cfg,
world,
start_state,
Pose.from_list(pose),
join_path("benchmark/log/usd/", problem_name) + "_debug",
write_ik=False,
write_trajopt=True,
visualize_robot_spheres=False,
grid_space=2,
write_robot_usd_path="benchmark/log/usd/assets/",
# flatten_usd=True,
)
# print(result.status)
# exit()
g_m = CuroboGroupMetrics.from_list(m_list)
if not args.kpi:
print(
key,
f"{g_m.success:2.2f}",
g_m.time.mean,
g_m.time.percent_98,
g_m.position_error.mean,
g_m.orientation_error.mean,
g_m.cspace_path_length.percent_98,
g_m.motion_time.percent_98,
)
print(g_m.attempts)
# print("MT: ", g_m.motion_time)
# $print(ik_fail)
# exit()
# print(g_m.position_error, g_m.orientation_error)
g_m = CuroboGroupMetrics.from_list(all_groups)
if not args.kpi:
print(
"All: ",
f"{g_m.success:2.2f}",
g_m.motion_time.percent_98,
g_m.time.mean,
g_m.time.percent_75,
g_m.position_error.percent_75,
g_m.orientation_error.percent_75,
) # g_m.time, g_m.attempts)
# print("MT: ", g_m.motion_time)
# print(g_m.position_error, g_m.orientation_error)
# exit()
if write_benchmark:
if not mpinets_data:
write_yaml(problems, args.file_name + "_mb_solution.yaml")
else:
write_yaml(problems, args.file_name + "_mpinets_solution.yaml")
all_files += all_groups
g_m = CuroboGroupMetrics.from_list(all_files)
# print(g_m.success, g_m.time, g_m.attempts, g_m.position_error, g_m.orientation_error)
print("######## FULL SET ############")
print("All: ", f"{g_m.success:2.2f}")
print("MT: ", g_m.motion_time)
print("path-length: ", g_m.cspace_path_length)
print("PT:", g_m.time)
print("ST: ", g_m.solve_time)
print("position error (mm): ", g_m.position_error)
print("orientation error(%): ", g_m.orientation_error)
if args.kpi:
kpi_data = {
"Success": g_m.success,
"Planning Time": float(g_m.time.mean),
"Planning Time Std": float(g_m.time.std),
"Planning Time Median": float(g_m.time.median),
"Planning Time 75th": float(g_m.time.percent_75),
"Planning Time 98th": float(g_m.time.percent_98),
}
write_yaml(kpi_data, join_path(args.save_path, args.file_name + ".yml"))
# run on mb dataset:
def check_problems(all_problems):
n_cube = 0
for problem in all_problems:
cache = (
WorldConfig.from_dict(deepcopy(problem["obstacles"])).get_obb_world().get_cache_dict()
)
n_cube = max(n_cube, cache["obb"])
return n_cube
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_path",
type=str,
default=".",
help="path to save file",
)
parser.add_argument(
"--file_name",
type=str,
default="mg_curobo_",
help="File name prefix to use to save benchmark results",
)
parser.add_argument(
"--collision_buffer",
type=float,
default=0.00, # in meters
help="Robot collision buffer",
)
parser.add_argument(
"--graph",
action="store_true",
help="When True, runs only geometric planner",
default=False,
)
parser.add_argument(
"--mesh",
action="store_true",
help="When True, converts obstacles to meshes",
default=False,
)
parser.add_argument(
"--kpi",
action="store_true",
help="When True, saves minimal metrics",
default=False,
)
parser.add_argument(
"--demo",
action="store_true",
help="When True, runs only on small dataaset",
default=False,
)
parser.add_argument(
"--disable_cuda_graph",
action="store_true",
help="When True, disable cuda graph during benchmarking",
default=False,
)
parser.add_argument(
"--write_benchmark",
action="store_true",
help="When True, writes paths to file",
default=False,
)
parser.add_argument(
"--save_usd",
action="store_true",
help="When True, writes paths to file",
default=False,
)
parser.add_argument(
"--save_plot",
action="store_true",
help="When True, writes paths to file",
default=False,
)
parser.add_argument(
"--report_edition",
action="store_true",
help="When True, runs benchmark with parameters from technical report",
default=False,
)
parser.add_argument(
"--jetson",
action="store_true",
help="When True, runs benchmark with parameters for jetson",
default=False,
)
args = parser.parse_args()
setup_curobo_logger("error")
benchmark_mb(
save_log=False,
write_usd=args.save_usd,
write_plot=args.save_plot,
write_benchmark=args.write_benchmark,
plot_cost=False,
graph_mode=args.graph,
args=args,
)