351 lines
11 KiB
Python
351 lines
11 KiB
Python
#!/usr/bin/env python3
|
|
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
|
|
try:
|
|
# Third Party
|
|
import isaacsim
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
# Third Party
|
|
import torch
|
|
|
|
a = torch.zeros(4, device="cuda:0")
|
|
|
|
# Standard Library
|
|
import argparse
|
|
|
|
## import curobo:
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--headless_mode",
|
|
type=str,
|
|
default=None,
|
|
help="To run headless, use one of [native, websocket], webrtc might not work.",
|
|
)
|
|
parser.add_argument(
|
|
"--visualize_spheres",
|
|
action="store_true",
|
|
help="When True, visualizes robot spheres",
|
|
default=False,
|
|
)
|
|
|
|
parser.add_argument("--robot", type=str, default="franka.yml", help="robot configuration to load")
|
|
args = parser.parse_args()
|
|
|
|
###########################################################
|
|
|
|
# Third Party
|
|
from omni.isaac.kit import SimulationApp
|
|
|
|
simulation_app = SimulationApp(
|
|
{
|
|
"headless": args.headless_mode is not None,
|
|
"width": "1920",
|
|
"height": "1080",
|
|
}
|
|
)
|
|
# Standard Library
|
|
import os
|
|
|
|
# Third Party
|
|
import carb
|
|
import numpy as np
|
|
from helper import add_extensions, add_robot_to_scene
|
|
from omni.isaac.core import World
|
|
from omni.isaac.core.objects import cuboid
|
|
|
|
########### frame prim #################
|
|
from omni.isaac.core.utils.types import ArticulationAction
|
|
|
|
# CuRobo
|
|
# from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig
|
|
from curobo.geom.sdf.world import CollisionCheckerType
|
|
from curobo.geom.types import WorldConfig
|
|
from curobo.rollout.rollout_base import Goal
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.math import Pose
|
|
from curobo.types.robot import JointState
|
|
from curobo.types.state import JointState
|
|
from curobo.util.logger import setup_curobo_logger
|
|
from curobo.util.usd_helper import UsdHelper
|
|
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
|
|
from curobo.wrap.reacher.mpc import MpcSolver, MpcSolverConfig
|
|
|
|
########### OV #################
|
|
|
|
|
|
############################################################
|
|
|
|
|
|
########### OV #################;;;;;
|
|
|
|
|
|
############################################################
|
|
|
|
|
|
def draw_points(rollouts: torch.Tensor):
|
|
if rollouts is None:
|
|
return
|
|
# Standard Library
|
|
import random
|
|
|
|
# Third Party
|
|
from omni.isaac.debug_draw import _debug_draw
|
|
|
|
draw = _debug_draw.acquire_debug_draw_interface()
|
|
N = 100
|
|
# if draw.get_num_points() > 0:
|
|
draw.clear_points()
|
|
cpu_rollouts = rollouts.cpu().numpy()
|
|
b, h, _ = cpu_rollouts.shape
|
|
point_list = []
|
|
colors = []
|
|
for i in range(b):
|
|
# get list of points:
|
|
point_list += [
|
|
(cpu_rollouts[i, j, 0], cpu_rollouts[i, j, 1], cpu_rollouts[i, j, 2]) for j in range(h)
|
|
]
|
|
colors += [(1.0 - (i + 1.0 / b), 0.3 * (i + 1.0 / b), 0.0, 0.1) for _ in range(h)]
|
|
sizes = [10.0 for _ in range(b * h)]
|
|
draw.draw_points(point_list, colors, sizes)
|
|
|
|
|
|
def main():
|
|
# assuming obstacles are in objects_path:
|
|
my_world = World(stage_units_in_meters=1.0)
|
|
stage = my_world.stage
|
|
|
|
xform = stage.DefinePrim("/World", "Xform")
|
|
stage.SetDefaultPrim(xform)
|
|
stage.DefinePrim("/curobo", "Xform")
|
|
# my_world.stage.SetDefaultPrim(my_world.stage.GetPrimAtPath("/World"))
|
|
stage = my_world.stage
|
|
my_world.scene.add_default_ground_plane()
|
|
|
|
# stage.SetDefaultPrim(stage.GetPrimAtPath("/World"))
|
|
|
|
# Make a target to follow
|
|
target = cuboid.VisualCuboid(
|
|
"/World/target",
|
|
position=np.array([0.5, 0, 0.5]),
|
|
orientation=np.array([0, 1, 0, 0]),
|
|
color=np.array([1.0, 0, 0]),
|
|
size=0.05,
|
|
)
|
|
|
|
setup_curobo_logger("warn")
|
|
past_pose = None
|
|
|
|
# warmup curobo instance
|
|
usd_help = UsdHelper()
|
|
|
|
tensor_args = TensorDeviceType()
|
|
|
|
robot_cfg = load_yaml(join_path(get_robot_configs_path(), args.robot))["robot_cfg"]
|
|
|
|
j_names = robot_cfg["kinematics"]["cspace"]["joint_names"]
|
|
default_config = robot_cfg["kinematics"]["cspace"]["retract_config"]
|
|
robot_cfg["kinematics"]["collision_sphere_buffer"] += 0.02
|
|
|
|
robot, _ = add_robot_to_scene(robot_cfg, my_world)
|
|
|
|
articulation_controller = robot.get_articulation_controller()
|
|
|
|
world_cfg_table = WorldConfig.from_dict(
|
|
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
|
|
)
|
|
world_cfg_table.cuboid[0].pose[2] -= 0.04
|
|
|
|
init_curobo = False
|
|
|
|
tensor_args = TensorDeviceType()
|
|
|
|
robot_cfg = load_yaml(join_path(get_robot_configs_path(), args.robot))["robot_cfg"]
|
|
|
|
# world_cfg = WorldConfig(cuboid=world_cfg_table.cuboid, mesh=world_cfg1.mesh)
|
|
j_names = robot_cfg["kinematics"]["cspace"]["joint_names"]
|
|
world_cfg = WorldConfig.from_dict(
|
|
load_yaml(join_path(get_world_configs_path(), "collision_nvblox.yml"))
|
|
)
|
|
world_cfg.add_obstacle(world_cfg_table.cuboid[0])
|
|
|
|
default_config = robot_cfg["kinematics"]["cspace"]["retract_config"]
|
|
|
|
mpc_config = MpcSolverConfig.load_from_robot_config(
|
|
robot_cfg,
|
|
world_cfg,
|
|
use_cuda_graph=True,
|
|
use_cuda_graph_metrics=True,
|
|
use_cuda_graph_full_step=False,
|
|
self_collision_check=True,
|
|
collision_checker_type=CollisionCheckerType.BLOX,
|
|
use_mppi=True,
|
|
use_lbfgs=False,
|
|
use_es=False,
|
|
store_rollouts=True,
|
|
step_dt=0.02,
|
|
)
|
|
|
|
mpc = MpcSolver(mpc_config)
|
|
|
|
retract_cfg = mpc.rollout_fn.dynamics_model.retract_config.clone().unsqueeze(0)
|
|
joint_names = mpc.rollout_fn.joint_names
|
|
|
|
state = mpc.rollout_fn.compute_kinematics(
|
|
JointState.from_position(retract_cfg, joint_names=joint_names)
|
|
)
|
|
current_state = JointState.from_position(retract_cfg, joint_names=joint_names)
|
|
retract_pose = Pose(state.ee_pos_seq, quaternion=state.ee_quat_seq)
|
|
goal = Goal(
|
|
current_state=current_state,
|
|
goal_state=JointState.from_position(retract_cfg, joint_names=joint_names),
|
|
goal_pose=retract_pose,
|
|
)
|
|
|
|
goal_buffer = mpc.setup_solve_single(goal, 1)
|
|
mpc.update_goal(goal_buffer)
|
|
|
|
mpc_result = mpc.step(current_state, max_attempts=2)
|
|
|
|
add_extensions(simulation_app, args.headless_mode)
|
|
usd_help.load_stage(my_world.stage)
|
|
usd_help.add_world_to_stage(world_cfg.get_mesh_world(), base_frame="/World")
|
|
|
|
init_world = False
|
|
cmd_state_full = None
|
|
step = 0
|
|
add_extensions(simulation_app, args.headless_mode)
|
|
while simulation_app.is_running():
|
|
if not init_world:
|
|
for _ in range(10):
|
|
my_world.step(render=True)
|
|
init_world = True
|
|
draw_points(mpc.get_visual_rollouts())
|
|
|
|
my_world.step(render=True)
|
|
if not my_world.is_playing():
|
|
continue
|
|
|
|
step_index = my_world.current_time_step_index
|
|
|
|
if step_index <= 2:
|
|
my_world.reset()
|
|
idx_list = [robot.get_dof_index(x) for x in j_names]
|
|
robot.set_joint_positions(default_config, idx_list)
|
|
|
|
robot._articulation_view.set_max_efforts(
|
|
values=np.array([5000 for i in range(len(idx_list))]), joint_indices=idx_list
|
|
)
|
|
|
|
if not init_curobo:
|
|
init_curobo = True
|
|
step += 1
|
|
step_index = step
|
|
|
|
# position and orientation of target virtual cube:
|
|
cube_position, cube_orientation = target.get_world_pose()
|
|
|
|
if past_pose is None:
|
|
past_pose = cube_position + 1.0
|
|
|
|
if np.linalg.norm(cube_position - past_pose) > 1e-3:
|
|
# Set EE teleop goals, use cube for simple non-vr init:
|
|
ee_translation_goal = cube_position
|
|
ee_orientation_teleop_goal = cube_orientation
|
|
ik_goal = Pose(
|
|
position=tensor_args.to_device(ee_translation_goal),
|
|
quaternion=tensor_args.to_device(ee_orientation_teleop_goal),
|
|
)
|
|
goal_buffer.goal_pose.copy_(ik_goal)
|
|
mpc.update_goal(goal_buffer)
|
|
past_pose = cube_position
|
|
|
|
# if not changed don't call curobo:
|
|
|
|
# get robot current state:
|
|
sim_js = robot.get_joints_state()
|
|
js_names = robot.dof_names
|
|
sim_js_names = robot.dof_names
|
|
|
|
cu_js = JointState(
|
|
position=tensor_args.to_device(sim_js.positions),
|
|
velocity=tensor_args.to_device(sim_js.velocities) * 0.0,
|
|
acceleration=tensor_args.to_device(sim_js.velocities) * 0.0,
|
|
jerk=tensor_args.to_device(sim_js.velocities) * 0.0,
|
|
joint_names=sim_js_names,
|
|
)
|
|
cu_js = cu_js.get_ordered_joint_state(mpc.rollout_fn.joint_names)
|
|
if cmd_state_full is None:
|
|
current_state.copy_(cu_js)
|
|
else:
|
|
current_state_partial = cmd_state_full.get_ordered_joint_state(
|
|
mpc.rollout_fn.joint_names
|
|
)
|
|
current_state.copy_(current_state_partial)
|
|
current_state.joint_names = current_state_partial.joint_names
|
|
# current_state = current_state.get_ordered_joint_state(mpc.rollout_fn.joint_names)
|
|
common_js_names = []
|
|
current_state.copy_(cu_js)
|
|
|
|
mpc_result = mpc.step(current_state, max_attempts=2)
|
|
# ik_result = ik_solver.solve_single(ik_goal, cu_js.position.view(1,-1), cu_js.position.view(1,1,-1))
|
|
|
|
succ = True # ik_result.success.item()
|
|
cmd_state_full = mpc_result.js_action
|
|
common_js_names = []
|
|
idx_list = []
|
|
for x in sim_js_names:
|
|
if x in cmd_state_full.joint_names:
|
|
idx_list.append(robot.get_dof_index(x))
|
|
common_js_names.append(x)
|
|
|
|
cmd_state = cmd_state_full.get_ordered_joint_state(common_js_names)
|
|
cmd_state_full = cmd_state
|
|
# print(ee_translation_goal, ee_orientation_teleop_goal)
|
|
|
|
# Compute IK for given EE Teleop goals
|
|
# articulation_action, succ = my_controller.compute_inverse_kinematics(
|
|
# ee_translation_goal,
|
|
# ee_orientation_teleop_goal,
|
|
# )
|
|
|
|
# create articulation action:
|
|
# get full dof state
|
|
art_action = ArticulationAction(
|
|
cmd_state.position.cpu().numpy(),
|
|
# cmd_state.velocity.cpu().numpy(),
|
|
joint_indices=idx_list,
|
|
)
|
|
# positions_goal = articulation_action.joint_positions
|
|
if step_index % 1000 == 0:
|
|
print(mpc_result.metrics.feasible.item(), mpc_result.metrics.pose_error.item())
|
|
|
|
if succ:
|
|
# set desired joint angles obtained from IK:
|
|
for _ in range(3):
|
|
articulation_controller.apply_action(art_action)
|
|
|
|
else:
|
|
carb.log_warn("No action is being taken.")
|
|
|
|
|
|
############################################################
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
simulation_app.close()
|