82 lines
2.6 KiB
Python
82 lines
2.6 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
# Standard Library
|
|
|
|
|
|
# CuRobo
|
|
|
|
# Third Party
|
|
from torch.profiler import ProfilerActivity, profile
|
|
|
|
# CuRobo
|
|
from curobo.geom.sdf.world import CollisionCheckerType
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.math import Pose
|
|
from curobo.types.robot import JointState, RobotConfig
|
|
from curobo.util_file import get_robot_configs_path, join_path, load_yaml
|
|
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig
|
|
|
|
|
|
def plot_traj(trajectory):
|
|
# Third Party
|
|
import matplotlib.pyplot as plt
|
|
|
|
_, axs = plt.subplots(1, 1)
|
|
q = trajectory
|
|
|
|
for i in range(q.shape[-1]):
|
|
axs.plot(q[:, i], label=str(i))
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
|
|
def demo_motion_gen():
|
|
PLOT = False
|
|
tensor_args = TensorDeviceType()
|
|
world_file = "collision_test.yml"
|
|
robot_file = "franka.yml"
|
|
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
|
robot_file,
|
|
world_file,
|
|
tensor_args,
|
|
trajopt_tsteps=40,
|
|
collision_checker_type=CollisionCheckerType.PRIMITIVE,
|
|
use_cuda_graph=False,
|
|
)
|
|
motion_gen = MotionGen(motion_gen_config)
|
|
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
|
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
|
|
retract_cfg = robot_cfg.retract_config
|
|
state = motion_gen.rollout_fn.compute_kinematics(
|
|
JointState.from_position(retract_cfg.view(1, -1))
|
|
)
|
|
|
|
retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze())
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.5)
|
|
result = motion_gen.plan(start_state, retract_pose, enable_graph=False)
|
|
|
|
# profile:
|
|
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
|
|
result = motion_gen.plan(start_state, retract_pose, enable_graph=False)
|
|
|
|
print("Exporting the trace..")
|
|
prof.export_chrome_trace("trace.json")
|
|
exit(10)
|
|
traj = result.raw_plan # optimized plan
|
|
print("Trajectory Generated: ", result.success)
|
|
if PLOT:
|
|
plot_traj(traj.cpu().numpy())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo_motion_gen()
|