Files
gen_data_curobo/benchmark/curobo_nvblox_benchmark.py
Balakumar Sundaralingam 58958bbcce update to 0.6.2
2023-12-15 02:01:33 -08:00

630 lines
24 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Standard Library
import argparse
from copy import deepcopy
from typing import Optional
# Third Party
import matplotlib.pyplot as plt
import numpy as np
import torch
from metrics import CuroboGroupMetrics, CuroboMetrics
from nvblox_torch.datasets.mesh_dataset import MeshDataset
from nvblox_torch.datasets.sun3d_dataset import Sun3dDataset
from robometrics.datasets import demo_raw, motion_benchmaker_raw, mpinets_raw
from tqdm import tqdm
# CuRobo
from curobo.geom.sdf.world import CollisionCheckerType, WorldConfig
from curobo.geom.types import Cuboid as curobo_Cuboid
from curobo.geom.types import Mesh
from curobo.types.base import TensorDeviceType
from curobo.types.camera import CameraObservation
from curobo.types.math import Pose
from curobo.types.robot import RobotConfig
from curobo.types.state import JointState
from curobo.util.logger import setup_curobo_logger
from curobo.util_file import (
get_assets_path,
get_robot_configs_path,
get_world_configs_path,
join_path,
load_yaml,
write_yaml,
)
from curobo.wrap.model.robot_world import RobotWorld, RobotWorldConfig
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
torch.manual_seed(0)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
np.random.seed(0)
def plot_cost_iteration(cost: torch.Tensor, save_path="cost", title="", log_scale=False):
fig = plt.figure(figsize=(5, 4))
cost = cost.cpu().numpy()
# save to csv:
np.savetxt(save_path + ".csv", cost, delimiter=",")
# if cost.shape[0] > 1:
colormap = plt.cm.winter
plt.gca().set_prop_cycle(plt.cycler("color", colormap(np.linspace(0, 1, cost.shape[0]))))
x = [i for i in range(cost.shape[-1])]
for i in range(cost.shape[0]):
plt.plot(x, cost[i], label="seed_" + str(i))
plt.tight_layout()
# plt.title(title)
plt.xlabel("iteration")
plt.ylabel("cost")
if log_scale:
plt.yscale("log")
plt.grid()
# plt.legend()
plt.tight_layout()
plt.savefig(save_path + ".pdf")
plt.close()
def plot_traj(act_seq: JointState, dt=0.25, title="", save_path="plot.png", sma_filter=False):
fig, ax = plt.subplots(4, 1, figsize=(5, 8), sharex=True)
t_steps = np.linspace(0, act_seq.position.shape[0] * dt, act_seq.position.shape[0])
if sma_filter:
kernel = 5
sma = torch.nn.AvgPool1d(kernel_size=kernel, stride=1, padding=2, ceil_mode=False).cuda()
for i in range(act_seq.position.shape[-1]):
ax[0].plot(t_steps, act_seq.position[:, i].cpu(), "-", label=str(i))
ax[1].plot(t_steps[: act_seq.velocity.shape[0]], act_seq.velocity[:, i].cpu(), "-")
if sma_filter:
act_seq.acceleration[:, i] = sma(
act_seq.acceleration[:, i].view(1, -1)
).squeeze() # @[1:-2]
ax[2].plot(t_steps[: act_seq.acceleration.shape[0]], act_seq.acceleration[:, i].cpu(), "-")
if sma_filter:
act_seq.jerk[:, i] = sma(act_seq.jerk[:, i].view(1, -1)).squeeze() # @[1:-2]\
ax[3].plot(t_steps[: act_seq.jerk.shape[0]], act_seq.jerk[:, i].cpu(), "-")
ax[0].set_title(title + " dt=" + "{:.3f}".format(dt))
ax[3].set_xlabel("Time(s)")
ax[3].set_ylabel("Jerk rad. s$^{-3}$")
ax[0].set_ylabel("Position rad.")
ax[1].set_ylabel("Velocity rad. s$^{-1}$")
ax[2].set_ylabel("Acceleration rad. s$^{-2}$")
ax[0].grid()
ax[1].grid()
ax[2].grid()
ax[3].grid()
ax[0].legend(bbox_to_anchor=(0.5, 1.6), loc="upper center", ncol=4)
plt.tight_layout()
plt.savefig(save_path)
plt.close()
def load_curobo(
n_cubes: int,
enable_debug: bool = False,
tsteps: int = 30,
trajopt_seeds: int = 4,
mpinets: bool = False,
graph_mode: bool = False,
cuda_graph: bool = True,
):
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
robot_cfg["kinematics"]["collision_sphere_buffer"] = -0.0
ik_seeds = 30 # 500
if graph_mode:
trajopt_seeds = 4
if trajopt_seeds >= 14:
ik_seeds = max(100, trajopt_seeds * 2)
if mpinets:
robot_cfg["kinematics"]["lock_joints"] = {
"panda_finger_joint1": 0.025,
"panda_finger_joint2": 0.025,
}
world_cfg = WorldConfig.from_dict(
{
"blox": {
"world": {
"pose": [0, 0, 0, 1, 0, 0, 0],
"integrator_type": "tsdf",
"voxel_size": 0.014,
}
}
}
)
interpolation_steps = 2000
if graph_mode:
interpolation_steps = 100
robot_cfg_instance = RobotConfig.from_dict(robot_cfg, tensor_args=TensorDeviceType())
K = robot_cfg_instance.kinematics.kinematics_config.joint_limits
K.position[0, :] -= 0.2
K.position[1, :] += 0.2
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_cfg_instance,
world_cfg,
trajopt_tsteps=tsteps,
collision_checker_type=CollisionCheckerType.BLOX,
use_cuda_graph=cuda_graph,
position_threshold=0.005, # 0.5 cm
rotation_threshold=0.05,
num_ik_seeds=ik_seeds,
num_graph_seeds=trajopt_seeds,
num_trajopt_seeds=trajopt_seeds,
interpolation_dt=0.025,
store_ik_debug=enable_debug,
store_trajopt_debug=enable_debug,
interpolation_steps=interpolation_steps,
collision_activation_distance=0.01,
trajopt_dt=0.25,
finetune_dt_scale=1.0,
maximum_trajectory_dt=0.1,
)
mg = MotionGen(motion_gen_config)
mg.warmup(enable_graph=True, warmup_js_trajopt=False)
# create a ground truth collision checker:
config = RobotWorldConfig.load_from_config(
robot_cfg,
"collision_table.yml",
collision_activation_distance=0.0,
collision_checker_type=CollisionCheckerType.PRIMITIVE,
n_cuboids=50,
)
robot_world = RobotWorld(config)
return mg, robot_cfg, robot_world
def benchmark_mb(
write_usd=False,
save_log=False,
write_plot=False,
write_benchmark=False,
plot_cost=False,
override_tsteps: Optional[int] = None,
args=None,
):
# load dataset:
graph_mode = args.graph
interpolation_dt = 0.02
file_paths = [demo_raw, motion_benchmaker_raw, mpinets_raw][1:]
enable_debug = save_log or plot_cost
all_files = []
og_tsteps = 32
if override_tsteps is not None:
og_tsteps = override_tsteps
og_trajopt_seeds = 12
if args.graph:
og_trajopt_seeds = 4
for file_path in file_paths:
all_groups = []
mpinets_data = False
problems = file_path()
if "dresser_task_oriented" in list(problems.keys()):
mpinets_data = True
mg, robot_cfg, robot_world = load_curobo(
1,
enable_debug,
og_tsteps,
og_trajopt_seeds,
mpinets_data,
graph_mode,
not args.disable_cuda_graph,
)
for key, v in tqdm(problems.items()):
scene_problems = problems[key]
m_list = []
i = 0
ik_fail = 0
for problem in tqdm(scene_problems, leave=False):
i += 1
plan_config = MotionGenPlanConfig(
max_attempts=10, # 00, # 00, # 100, # 00, # 000,#,00,#00, # 5000,
enable_graph_attempt=3,
disable_graph_attempt=20,
enable_finetune_trajopt=True,
partial_ik_opt=False,
enable_graph=graph_mode,
timeout=60,
enable_opt=not graph_mode,
)
q_start = problem["start"]
pose = (
problem["goal_pose"]["position_xyz"] + problem["goal_pose"]["quaternion_wxyz"]
)
problem_name = "nvblox_" + key + "_" + str(i)
# reset planner
mg.reset(reset_seed=False)
world = WorldConfig.from_dict(problem["obstacles"])
# .get_mesh_world(
# # merge_meshes=True
# )
# mesh = world.mesh[0].get_trimesh_mesh()
# world.save_world_as_mesh(problem_name + ".stl")
mg.world_coll_checker.update_blox_hashes()
mg.world_coll_checker.clear_cache()
save_path = "benchmark/log/nvblox/" + key + "_" + str(i)
m_dataset = Sun3dDataset(save_path)
# m_dataset = MeshDataset(
# None, n_frames=100, image_size=640, save_data_dir=None, trimesh_mesh=mesh
# )
tensor_args = mg.tensor_args
for j in tqdm(range(len(m_dataset)), leave=False):
data = m_dataset[j]
cam_obs = CameraObservation(
rgb_image=tensor_args.to_device(data["rgba"])
.squeeze()
.to(dtype=torch.uint8)
.permute(1, 2, 0), # data[rgba]: 4 x H x W -> H x W x 4
depth_image=tensor_args.to_device(data["depth"]),
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=mg.tensor_args.device)),
)
cam_obs = cam_obs
mg.add_camera_frame(cam_obs, "world")
mg.process_camera_frames("world", False)
torch.cuda.synchronize()
mg.world_coll_checker.update_blox_hashes()
torch.cuda.synchronize()
# mg.world_coll_checker.save_layer("world", "test.nvblx")
if save_log or write_usd:
world.randomize_color(r=[0.5, 0.9], g=[0.2, 0.5], b=[0.0, 0.2])
nvblox_obs = mg.world_coll_checker.get_mesh_from_blox_layer(
"world",
)
# nvblox_obs.vertex_colors = None
if nvblox_obs.vertex_colors is not None:
nvblox_obs.vertex_colors = nvblox_obs.vertex_colors.cpu().numpy()
else:
nvblox_obs.color = [0.0, 0.0, 0.8, 0.8]
nvblox_obs.name = "nvblox_mesh_world"
world.add_obstacle(nvblox_obs)
coll_mesh = mg.world_coll_checker.get_mesh_in_bounding_box(
curobo_Cuboid(name="test", pose=[0, 0, 0, 1, 0, 0, 0], dims=[1.5, 1.5, 1]),
voxel_size=0.005,
)
coll_mesh.color = [0.0, 0.8, 0.8, 0.8]
coll_mesh.name = "nvblox_voxel_world"
world.add_obstacle(coll_mesh)
# exit()
# run planner
start_state = JointState.from_position(mg.tensor_args.to_device([q_start]))
result = mg.plan_single(
start_state,
Pose.from_list(pose),
plan_config,
)
if result.status == "IK Fail":
ik_fail += 1
problem["solution"] = None
if write_usd or save_log:
# CuRobo
from curobo.util.usd_helper import UsdHelper
gripper_mesh = Mesh(
name="target_gripper_1",
file_path=join_path(
get_assets_path(),
"robot/franka_description/meshes/visual/hand.dae",
),
color=[0.0, 0.8, 0.1, 1.0],
pose=pose,
)
world.add_obstacle(gripper_mesh)
# get costs:
if plot_cost:
dt = 0.5
problem_name = "approx_wolfe_p" + problem_name
if result.optimized_dt is not None:
dt = result.optimized_dt.item()
if "trajopt_result" in result.debug_info:
success = result.success.item()
traj_cost = result.debug_info["trajopt_result"].debug_info["solver"][
"cost"
][-1]
traj_cost = torch.cat(traj_cost, dim=-1)
plot_cost_iteration(
traj_cost,
title=problem_name + "_" + str(success) + "_" + str(dt),
save_path=join_path("benchmark/log/plot/", problem_name + "_cost"),
log_scale=False,
)
if "finetune_trajopt_result" in result.debug_info:
traj_cost = result.debug_info["finetune_trajopt_result"].debug_info[
"solver"
]["cost"][0]
traj_cost = torch.cat(traj_cost, dim=-1)
plot_cost_iteration(
traj_cost,
title=problem_name + "_" + str(success) + "_" + str(dt),
save_path=join_path(
"benchmark/log/plot/", problem_name + "_ft_cost"
),
log_scale=False,
)
if result.success.item():
q_traj = result.get_interpolated_plan()
problem["goal_ik"] = q_traj.position.cpu().squeeze().numpy()[-1, :].tolist()
problem["solution"] = {
"position": result.get_interpolated_plan()
.position.cpu()
.squeeze()
.numpy()
.tolist(),
"velocity": result.get_interpolated_plan()
.velocity.cpu()
.squeeze()
.numpy()
.tolist(),
"acceleration": result.get_interpolated_plan()
.acceleration.cpu()
.squeeze()
.numpy()
.tolist(),
"jerk": result.get_interpolated_plan()
.jerk.cpu()
.squeeze()
.numpy()
.tolist(),
"dt": interpolation_dt,
}
debug = {
"used_graph": result.used_graph,
"attempts": result.attempts,
"ik_time": result.ik_time,
"graph_time": result.graph_time,
"trajopt_time": result.trajopt_time,
"total_time": result.total_time,
"solve_time": result.solve_time,
"opt_traj": {
"position": result.optimized_plan.position.cpu()
.squeeze()
.numpy()
.tolist(),
"velocity": result.optimized_plan.velocity.cpu()
.squeeze()
.numpy()
.tolist(),
"acceleration": result.optimized_plan.acceleration.cpu()
.squeeze()
.numpy()
.tolist(),
"jerk": result.optimized_plan.jerk.cpu().squeeze().numpy().tolist(),
"dt": result.optimized_dt.item(),
},
"valid_query": result.valid_query,
}
problem["solution_debug"] = debug
# check if path is collision free w.r.t. ground truth mesh:
robot_world.world_model.clear_cache()
robot_world.update_world(world)
q_int_traj = result.get_interpolated_plan().position.unsqueeze(0)
d_int_mask = (
torch.count_nonzero(~robot_world.validate_trajectory(q_int_traj)) == 0
).item()
q_traj = result.optimized_plan.position.unsqueeze(0)
d_mask = (
torch.count_nonzero(~robot_world.validate_trajectory(q_traj)) == 0
).item()
current_metrics = CuroboMetrics(
skip=False,
success=True,
perception_success=d_mask,
perception_interpolated_success=d_int_mask,
time=result.total_time,
collision=False,
joint_limit_violation=False,
self_collision=False,
position_error=result.position_error.item() * 100.0,
orientation_error=result.rotation_error.item() * 100.0,
eef_position_path_length=10,
eef_orientation_path_length=10,
attempts=result.attempts,
motion_time=result.motion_time.item(),
solve_time=result.solve_time,
)
if write_usd:
# CuRobo
q_traj = result.get_interpolated_plan()
UsdHelper.write_trajectory_animation_with_robot_usd(
robot_cfg,
world,
start_state,
q_traj,
dt=result.interpolation_dt,
save_path=join_path("benchmark/log/usd/", problem_name) + ".usd",
interpolation_steps=1,
write_robot_usd_path="benchmark/log/usd/assets/",
robot_usd_local_reference="assets/",
base_frame="/world_" + problem_name,
visualize_robot_spheres=True,
# flatten_usd=True,
)
exit()
if write_plot:
problem_name = problem_name
plot_traj(
result.optimized_plan,
result.optimized_dt.item(),
# result.get_interpolated_plan(),
# result.interpolation_dt,
title=problem_name,
save_path=join_path("benchmark/log/plot/", problem_name + ".pdf"),
)
plot_traj(
# result.optimized_plan,
# result.optimized_dt.item(),
result.get_interpolated_plan(),
result.interpolation_dt,
title=problem_name,
save_path=join_path("benchmark/log/plot/", problem_name + "_int.pdf"),
)
m_list.append(current_metrics)
all_groups.append(current_metrics)
elif result.valid_query:
current_metrics = CuroboMetrics()
debug = {
"used_graph": result.used_graph,
"attempts": result.attempts,
"ik_time": result.ik_time,
"graph_time": result.graph_time,
"trajopt_time": result.trajopt_time,
"total_time": result.total_time,
"solve_time": result.solve_time,
"status": result.status,
"valid_query": result.valid_query,
}
problem["solution_debug"] = debug
m_list.append(current_metrics)
all_groups.append(current_metrics)
else:
# print("invalid: " + problem_name)
debug = {
"used_graph": result.used_graph,
"attempts": result.attempts,
"ik_time": result.ik_time,
"graph_time": result.graph_time,
"trajopt_time": result.trajopt_time,
"total_time": result.total_time,
"solve_time": result.solve_time,
"status": result.status,
"valid_query": result.valid_query,
}
problem["solution_debug"] = debug
if save_log and not result.success.item():
UsdHelper.write_motion_gen_log(
result,
robot_cfg,
world,
start_state,
Pose.from_list(pose),
join_path("benchmark/log/usd/", problem_name) + "_debug",
write_ik=True,
write_trajopt=True,
visualize_robot_spheres=True,
grid_space=2,
# flatten_usd=True,
)
# exit()
g_m = CuroboGroupMetrics.from_list(m_list)
print(
key,
f"{g_m.success:2.2f}",
g_m.time.mean,
# g_m.time.percent_75,
g_m.time.percent_98,
g_m.position_error.percent_98,
# g_m.position_error.median,
g_m.orientation_error.percent_98,
g_m.cspace_path_length.percent_98,
g_m.motion_time.percent_98,
g_m.perception_success,
# g_m.orientation_error.median,
)
print(g_m.attempts)
g_m = CuroboGroupMetrics.from_list(all_groups)
print(
"All: ",
f"{g_m.success:2.2f}",
g_m.motion_time.percent_98,
g_m.time.mean,
g_m.time.percent_75,
g_m.position_error.percent_75,
g_m.orientation_error.percent_75,
g_m.perception_success,
)
print(g_m.attempts)
if write_benchmark:
if not mpinets_data:
write_yaml(problems, "mb_curobo_solution_nvblox.yaml")
else:
write_yaml(problems, "mpinets_curobo_solution_nvblox.yaml")
all_files += all_groups
g_m = CuroboGroupMetrics.from_list(all_files)
print("######## FULL SET ############")
print("All: ", f"{g_m.success:2.2f}")
print(
"Perception Success (coarse, interpolated):",
g_m.perception_success,
g_m.perception_interpolated_success,
)
print("MT: ", g_m.motion_time)
print("PT:", g_m.time)
print("ST: ", g_m.solve_time)
print("accuracy: ", g_m.position_error, g_m.orientation_error)
if __name__ == "__main__":
setup_curobo_logger("error")
parser = argparse.ArgumentParser()
parser.add_argument(
"--graph",
action="store_true",
help="When True, runs only geometric planner",
default=False,
)
parser.add_argument(
"--disable_cuda_graph",
action="store_true",
help="When True, disable cuda graph during benchmarking",
default=False,
)
args = parser.parse_args()
benchmark_mb(
save_log=False,
write_usd=False,
write_plot=False,
write_benchmark=False,
plot_cost=False,
args=args,
)