Files
gen_data_curobo/tests/pose_reaching_test.py
Balakumar Sundaralingam 58958bbcce update to 0.6.2
2023-12-15 02:01:33 -08:00

77 lines
2.7 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import pytest
# CuRobo
from curobo.types.math import Pose
from curobo.types.robot import JointState
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
@pytest.mark.parametrize(
"parallel_finetune, force_graph, expected_motion_time",
[
(True, False, 12),
(False, False, 12),
(True, True, 12),
(False, True, 12),
],
)
def test_pose_sequence_ur5e(parallel_finetune, force_graph, expected_motion_time):
# load ur5e motion gen:
world_file = "collision_table.yml"
robot_file = "ur5e.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
interpolation_dt=(1 / 30),
)
motion_gen = MotionGen(motion_gen_config)
motion_gen.warmup(parallel_finetune=parallel_finetune)
retract_cfg = motion_gen.get_retract_config()
start_state = JointState.from_position(retract_cfg.view(1, -1))
# poses for ur5e:
home_pose = [-0.431, 0.172, 0.348, 0, 1, 0, 0]
pose_1 = [0.157, -0.443, 0.427, 0, 1, 0, 0]
pose_2 = [0.126, -0.443, 0.729, 0, 0, 1, 0]
pose_3 = [-0.449, 0.339, 0.414, -0.681, -0.000, 0.000, 0.732]
pose_4 = [-0.449, 0.339, 0.414, 0.288, 0.651, -0.626, -0.320]
pose_5 = [-0.218, 0.508, 0.670, 0.529, 0.169, 0.254, 0.792]
pose_6 = [-0.865, 0.001, 0.411, 0.286, 0.648, -0.628, -0.321]
pose_list = [home_pose, pose_1, pose_2, pose_3, pose_4, pose_5, pose_6, home_pose]
trajectory = start_state
motion_time = 0
fail = 0
for i, pose in enumerate(pose_list):
goal_pose = Pose.from_list(pose, q_xyzw=False)
start_state = trajectory[-1].unsqueeze(0).clone()
start_state.velocity[:] = 0.0
start_state.acceleration[:] = 0.0
result = motion_gen.plan_single(
start_state.clone(),
goal_pose,
plan_config=MotionGenPlanConfig(
parallel_finetune=parallel_finetune, max_attempts=1, enable_graph=force_graph
),
)
if result.success.item():
plan = result.get_interpolated_plan()
trajectory = trajectory.stack(plan.clone())
motion_time += result.motion_time
else:
fail += 1
assert fail == 0
assert motion_time <= expected_motion_time