662 lines
26 KiB
Python
662 lines
26 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
# Standard Library
|
|
import argparse
|
|
from copy import deepcopy
|
|
from typing import Optional
|
|
|
|
# Third Party
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import torch
|
|
from nvblox_torch.datasets.mesh_dataset import MeshDataset
|
|
from nvblox_torch.datasets.sun3d_dataset import Sun3dDataset
|
|
from robometrics.datasets import demo_raw, motion_benchmaker_raw, mpinets_raw
|
|
from tqdm import tqdm
|
|
|
|
# CuRobo
|
|
from curobo.geom.sdf.world import CollisionCheckerType, WorldConfig
|
|
from curobo.geom.types import Cuboid as curobo_Cuboid
|
|
from curobo.geom.types import Mesh
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.camera import CameraObservation
|
|
from curobo.types.math import Pose
|
|
from curobo.types.robot import RobotConfig
|
|
from curobo.types.state import JointState
|
|
from curobo.util.logger import setup_curobo_logger
|
|
from curobo.util.metrics import CuroboGroupMetrics, CuroboMetrics
|
|
from curobo.util_file import (
|
|
get_assets_path,
|
|
get_robot_configs_path,
|
|
get_world_configs_path,
|
|
join_path,
|
|
load_yaml,
|
|
write_yaml,
|
|
)
|
|
from curobo.wrap.model.robot_world import RobotWorld, RobotWorldConfig
|
|
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
|
|
|
torch.manual_seed(0)
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
np.random.seed(0)
|
|
|
|
|
|
def plot_cost_iteration(cost: torch.Tensor, save_path="cost", title="", log_scale=False):
|
|
fig = plt.figure(figsize=(5, 4))
|
|
cost = cost.cpu().numpy()
|
|
# save to csv:
|
|
np.savetxt(save_path + ".csv", cost, delimiter=",")
|
|
|
|
# if cost.shape[0] > 1:
|
|
colormap = plt.cm.winter
|
|
plt.gca().set_prop_cycle(plt.cycler("color", colormap(np.linspace(0, 1, cost.shape[0]))))
|
|
x = [i for i in range(cost.shape[-1])]
|
|
for i in range(cost.shape[0]):
|
|
plt.plot(x, cost[i], label="seed_" + str(i))
|
|
plt.tight_layout()
|
|
# plt.title(title)
|
|
plt.xlabel("iteration")
|
|
plt.ylabel("cost")
|
|
if log_scale:
|
|
plt.yscale("log")
|
|
plt.grid()
|
|
# plt.legend()
|
|
plt.tight_layout()
|
|
plt.savefig(save_path + ".pdf")
|
|
plt.close()
|
|
|
|
|
|
def plot_traj(act_seq: JointState, dt=0.25, title="", save_path="plot.png", sma_filter=False):
|
|
fig, ax = plt.subplots(4, 1, figsize=(5, 8), sharex=True)
|
|
t_steps = np.linspace(0, act_seq.position.shape[0] * dt, act_seq.position.shape[0])
|
|
|
|
if sma_filter:
|
|
kernel = 5
|
|
sma = torch.nn.AvgPool1d(kernel_size=kernel, stride=1, padding=2, ceil_mode=False).cuda()
|
|
|
|
for i in range(act_seq.position.shape[-1]):
|
|
ax[0].plot(t_steps, act_seq.position[:, i].cpu(), "-", label=str(i))
|
|
|
|
ax[1].plot(t_steps[: act_seq.velocity.shape[0]], act_seq.velocity[:, i].cpu(), "-")
|
|
if sma_filter:
|
|
act_seq.acceleration[:, i] = sma(
|
|
act_seq.acceleration[:, i].view(1, -1)
|
|
).squeeze() # @[1:-2]
|
|
|
|
ax[2].plot(t_steps[: act_seq.acceleration.shape[0]], act_seq.acceleration[:, i].cpu(), "-")
|
|
if sma_filter:
|
|
act_seq.jerk[:, i] = sma(act_seq.jerk[:, i].view(1, -1)).squeeze() # @[1:-2]\
|
|
|
|
ax[3].plot(t_steps[: act_seq.jerk.shape[0]], act_seq.jerk[:, i].cpu(), "-")
|
|
ax[0].set_title(title + " dt=" + "{:.3f}".format(dt))
|
|
ax[3].set_xlabel("Time(s)")
|
|
ax[3].set_ylabel("Jerk rad. s$^{-3}$")
|
|
ax[0].set_ylabel("Position rad.")
|
|
ax[1].set_ylabel("Velocity rad. s$^{-1}$")
|
|
ax[2].set_ylabel("Acceleration rad. s$^{-2}$")
|
|
ax[0].grid()
|
|
ax[1].grid()
|
|
ax[2].grid()
|
|
ax[3].grid()
|
|
ax[0].legend(bbox_to_anchor=(0.5, 1.6), loc="upper center", ncol=4)
|
|
plt.tight_layout()
|
|
plt.savefig(save_path)
|
|
plt.close()
|
|
|
|
|
|
def load_curobo(
|
|
n_cubes: int,
|
|
enable_debug: bool = False,
|
|
tsteps: int = 30,
|
|
trajopt_seeds: int = 4,
|
|
mpinets: bool = False,
|
|
graph_mode: bool = False,
|
|
cuda_graph: bool = True,
|
|
collision_activation_distance: float = 0.025,
|
|
):
|
|
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
|
|
robot_cfg["kinematics"]["collision_sphere_buffer"] = 0.0
|
|
|
|
ik_seeds = 30
|
|
if graph_mode:
|
|
trajopt_seeds = 4
|
|
if trajopt_seeds >= 14:
|
|
ik_seeds = max(100, trajopt_seeds * 2)
|
|
if mpinets:
|
|
robot_cfg["kinematics"]["lock_joints"] = {
|
|
"panda_finger_joint1": 0.025,
|
|
"panda_finger_joint2": 0.025,
|
|
}
|
|
world_cfg = WorldConfig.from_dict(
|
|
{
|
|
"blox": {
|
|
"world": {
|
|
"pose": [0, 0, 0, 1, 0, 0, 0],
|
|
"integrator_type": "tsdf",
|
|
"voxel_size": 0.01,
|
|
}
|
|
}
|
|
}
|
|
)
|
|
interpolation_steps = 2000
|
|
if graph_mode:
|
|
interpolation_steps = 100
|
|
robot_cfg_instance = RobotConfig.from_dict(robot_cfg, tensor_args=TensorDeviceType())
|
|
K = robot_cfg_instance.kinematics.kinematics_config.joint_limits
|
|
K.position[0, :] -= 0.2
|
|
K.position[1, :] += 0.2
|
|
|
|
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
|
robot_cfg_instance,
|
|
world_cfg,
|
|
trajopt_tsteps=tsteps,
|
|
collision_checker_type=CollisionCheckerType.BLOX,
|
|
use_cuda_graph=cuda_graph,
|
|
position_threshold=0.005, # 0.5 cm
|
|
rotation_threshold=0.05,
|
|
num_ik_seeds=ik_seeds,
|
|
num_graph_seeds=trajopt_seeds,
|
|
num_trajopt_seeds=trajopt_seeds,
|
|
interpolation_dt=0.025,
|
|
store_ik_debug=enable_debug,
|
|
store_trajopt_debug=enable_debug,
|
|
interpolation_steps=interpolation_steps,
|
|
collision_activation_distance=collision_activation_distance,
|
|
trajopt_dt=0.25,
|
|
finetune_dt_scale=1.0,
|
|
maximum_trajectory_dt=0.1,
|
|
finetune_trajopt_iters=300,
|
|
)
|
|
mg = MotionGen(motion_gen_config)
|
|
mg.warmup(enable_graph=True, warmup_js_trajopt=False, parallel_finetune=True)
|
|
# create a ground truth collision checker:
|
|
config = RobotWorldConfig.load_from_config(
|
|
robot_cfg_instance,
|
|
"collision_table.yml",
|
|
collision_activation_distance=0.0,
|
|
collision_checker_type=CollisionCheckerType.PRIMITIVE,
|
|
n_cuboids=50,
|
|
)
|
|
robot_world = RobotWorld(config)
|
|
|
|
return mg, robot_cfg, robot_world
|
|
|
|
|
|
def benchmark_mb(
|
|
write_usd=False,
|
|
save_log=False,
|
|
write_plot=False,
|
|
write_benchmark=False,
|
|
plot_cost=False,
|
|
override_tsteps: Optional[int] = None,
|
|
args=None,
|
|
):
|
|
# load dataset:
|
|
graph_mode = args.graph
|
|
interpolation_dt = 0.02
|
|
file_paths = [demo_raw, motion_benchmaker_raw, mpinets_raw][2:]
|
|
|
|
enable_debug = save_log or plot_cost
|
|
all_files = []
|
|
og_tsteps = 32
|
|
if override_tsteps is not None:
|
|
og_tsteps = override_tsteps
|
|
|
|
og_trajopt_seeds = 12
|
|
og_collision_activation_distance = 0.03 # 0.03
|
|
if args.graph:
|
|
og_trajopt_seeds = 4
|
|
for file_path in file_paths:
|
|
all_groups = []
|
|
mpinets_data = False
|
|
problems = file_path()
|
|
|
|
for key, v in tqdm(problems.items()):
|
|
scene_problems = problems[key]
|
|
m_list = []
|
|
i = -1
|
|
ik_fail = 0
|
|
trajopt_seeds = og_trajopt_seeds
|
|
tsteps = og_tsteps
|
|
collision_activation_distance = og_collision_activation_distance
|
|
if "dresser_task_oriented" in list(problems.keys()):
|
|
mpinets_data = True
|
|
|
|
if "cage_panda" in key:
|
|
trajopt_seeds = 16
|
|
finetune_dt_scale = 0.95
|
|
if "table_under_pick_panda" in key:
|
|
tsteps = 44
|
|
trajopt_seeds = 16
|
|
finetune_dt_scale = 0.98
|
|
|
|
if "cubby_task_oriented" in key and "merged" not in key:
|
|
trajopt_seeds = 24
|
|
finetune_dt_scale = 0.95
|
|
collision_activation_distance = 0.035
|
|
if "dresser_task_oriented" in key:
|
|
trajopt_seeds = 24
|
|
finetune_dt_scale = 0.95
|
|
collision_activation_distance = 0.035 # 0.035
|
|
|
|
if "merged_cubby_task_oriented" in key:
|
|
collision_activation_distance = 0.025 # 0.035
|
|
if "tabletop_task_oriented" in key:
|
|
collision_activation_distance = 0.025 # 0.035
|
|
if key in ["dresser_neutral_goal"]:
|
|
trajopt_seeds = 24
|
|
collision_activation_distance = og_collision_activation_distance
|
|
mg, robot_cfg, robot_world = load_curobo(
|
|
1,
|
|
enable_debug,
|
|
tsteps,
|
|
trajopt_seeds,
|
|
mpinets_data,
|
|
graph_mode,
|
|
not args.disable_cuda_graph,
|
|
collision_activation_distance=collision_activation_distance,
|
|
)
|
|
for problem in tqdm(scene_problems, leave=False):
|
|
i += 1
|
|
if problem["collision_buffer_ik"] < 0.0:
|
|
continue
|
|
|
|
plan_config = MotionGenPlanConfig(
|
|
max_attempts=10,
|
|
enable_graph_attempt=1,
|
|
enable_finetune_trajopt=True,
|
|
partial_ik_opt=False,
|
|
enable_graph=graph_mode,
|
|
timeout=60,
|
|
enable_opt=not graph_mode,
|
|
parallel_finetune=True,
|
|
)
|
|
|
|
q_start = problem["start"]
|
|
pose = (
|
|
problem["goal_pose"]["position_xyz"] + problem["goal_pose"]["quaternion_wxyz"]
|
|
)
|
|
|
|
problem_name = "nvblox_" + key + "_" + str(i)
|
|
|
|
# reset planner
|
|
mg.reset(reset_seed=False)
|
|
world = WorldConfig.from_dict(problem["obstacles"])
|
|
|
|
mg.world_coll_checker.clear_cache()
|
|
mg.world_coll_checker.update_blox_hashes()
|
|
|
|
save_path = "benchmark/log/nvblox/" + key + "_" + str(i)
|
|
|
|
m_dataset = Sun3dDataset(save_path)
|
|
|
|
tensor_args = mg.tensor_args
|
|
for j in tqdm(range(min(1, len(m_dataset))), leave=False):
|
|
data = m_dataset[j]
|
|
cam_obs = CameraObservation(
|
|
rgb_image=tensor_args.to_device(data["rgba"])
|
|
.squeeze()
|
|
.to(dtype=torch.uint8)
|
|
.permute(1, 2, 0), # data[rgba]: 4 x H x W -> H x W x 4
|
|
depth_image=tensor_args.to_device(data["depth"]),
|
|
intrinsics=data["intrinsics"],
|
|
pose=Pose.from_matrix(data["pose"].to(device=mg.tensor_args.device)),
|
|
)
|
|
cam_obs = cam_obs
|
|
|
|
mg.add_camera_frame(cam_obs, "world")
|
|
|
|
mg.process_camera_frames("world", False)
|
|
torch.cuda.synchronize()
|
|
mg.world_coll_checker.update_blox_hashes()
|
|
torch.cuda.synchronize()
|
|
# if i > 2:
|
|
# mg.world_coll_checker.clear_cache()
|
|
# mg.world_coll_checker.update_blox_hashes()
|
|
|
|
# mg.world_coll_checker.save_layer("world", "test.nvblx")
|
|
|
|
start_state = JointState.from_position(mg.tensor_args.to_device([q_start]))
|
|
result = mg.plan_single(
|
|
start_state,
|
|
Pose.from_list(pose),
|
|
plan_config,
|
|
)
|
|
if result.status == "IK Fail":
|
|
ik_fail += 1
|
|
problem["solution"] = None
|
|
|
|
# get costs:
|
|
if plot_cost:
|
|
dt = 0.5
|
|
problem_name = "approx_wolfe_p" + problem_name
|
|
if result.optimized_dt is not None:
|
|
dt = result.optimized_dt.item()
|
|
if "trajopt_result" in result.debug_info:
|
|
success = result.success.item()
|
|
traj_cost = result.debug_info["trajopt_result"].debug_info["solver"][
|
|
"cost"
|
|
][-1]
|
|
traj_cost = torch.cat(traj_cost, dim=-1)
|
|
plot_cost_iteration(
|
|
traj_cost,
|
|
title=problem_name + "_" + str(success) + "_" + str(dt),
|
|
save_path=join_path("benchmark/log/plot/", problem_name + "_cost"),
|
|
log_scale=False,
|
|
)
|
|
if "finetune_trajopt_result" in result.debug_info:
|
|
traj_cost = result.debug_info["finetune_trajopt_result"].debug_info[
|
|
"solver"
|
|
]["cost"][0]
|
|
traj_cost = torch.cat(traj_cost, dim=-1)
|
|
plot_cost_iteration(
|
|
traj_cost,
|
|
title=problem_name + "_" + str(success) + "_" + str(dt),
|
|
save_path=join_path(
|
|
"benchmark/log/plot/", problem_name + "_ft_cost"
|
|
),
|
|
log_scale=False,
|
|
)
|
|
if result.success.item():
|
|
q_traj = result.get_interpolated_plan()
|
|
problem["goal_ik"] = q_traj.position.cpu().squeeze().numpy()[-1, :].tolist()
|
|
problem["solution"] = {
|
|
"position": result.get_interpolated_plan()
|
|
.position.cpu()
|
|
.squeeze()
|
|
.numpy()
|
|
.tolist(),
|
|
"velocity": result.get_interpolated_plan()
|
|
.velocity.cpu()
|
|
.squeeze()
|
|
.numpy()
|
|
.tolist(),
|
|
"acceleration": result.get_interpolated_plan()
|
|
.acceleration.cpu()
|
|
.squeeze()
|
|
.numpy()
|
|
.tolist(),
|
|
"jerk": result.get_interpolated_plan()
|
|
.jerk.cpu()
|
|
.squeeze()
|
|
.numpy()
|
|
.tolist(),
|
|
"dt": interpolation_dt,
|
|
}
|
|
debug = {
|
|
"used_graph": result.used_graph,
|
|
"attempts": result.attempts,
|
|
"ik_time": result.ik_time,
|
|
"graph_time": result.graph_time,
|
|
"trajopt_time": result.trajopt_time,
|
|
"total_time": result.total_time,
|
|
"solve_time": result.solve_time,
|
|
"opt_traj": {
|
|
"position": result.optimized_plan.position.cpu()
|
|
.squeeze()
|
|
.numpy()
|
|
.tolist(),
|
|
"velocity": result.optimized_plan.velocity.cpu()
|
|
.squeeze()
|
|
.numpy()
|
|
.tolist(),
|
|
"acceleration": result.optimized_plan.acceleration.cpu()
|
|
.squeeze()
|
|
.numpy()
|
|
.tolist(),
|
|
"jerk": result.optimized_plan.jerk.cpu().squeeze().numpy().tolist(),
|
|
"dt": result.optimized_dt.item(),
|
|
},
|
|
"valid_query": result.valid_query,
|
|
}
|
|
problem["solution_debug"] = debug
|
|
world_coll = WorldConfig.from_dict(problem["obstacles"]).get_obb_world()
|
|
|
|
# check if path is collision free w.r.t. ground truth mesh:
|
|
# robot_world.world_model.clear_cache()
|
|
robot_world.update_world(world_coll)
|
|
|
|
q_int_traj = result.get_interpolated_plan().position.unsqueeze(0)
|
|
d_int_mask = (
|
|
torch.count_nonzero(~robot_world.validate_trajectory(q_int_traj)) == 0
|
|
).item()
|
|
|
|
q_traj = result.optimized_plan.position.unsqueeze(0)
|
|
d_mask = (
|
|
torch.count_nonzero(~robot_world.validate_trajectory(q_traj)) == 0
|
|
).item()
|
|
# d_world, _ = robot_world.get_world_self_collision_distance_from_joint_trajectory(
|
|
# q_traj)
|
|
# thres_dist = robot_world.contact_distance
|
|
# in_collision = d_world.squeeze(0) > thres_dist
|
|
# d_mask = not torch.any(in_collision, dim=-1).item()
|
|
# if not d_mask:
|
|
# write_usd = True
|
|
# #print(torch.max(d_world).item(), problem_name)
|
|
current_metrics = CuroboMetrics(
|
|
skip=False,
|
|
success=True,
|
|
perception_success=d_mask,
|
|
perception_interpolated_success=d_int_mask,
|
|
time=result.total_time,
|
|
collision=False,
|
|
joint_limit_violation=False,
|
|
self_collision=False,
|
|
position_error=result.position_error.item() * 100.0,
|
|
orientation_error=result.rotation_error.item() * 100.0,
|
|
eef_position_path_length=10,
|
|
eef_orientation_path_length=10,
|
|
attempts=result.attempts,
|
|
motion_time=result.motion_time.item(),
|
|
solve_time=result.solve_time,
|
|
jerk=torch.max(torch.abs(result.optimized_plan.jerk)).item(),
|
|
)
|
|
|
|
if save_log or write_usd:
|
|
world.randomize_color(r=[0.5, 0.9], g=[0.2, 0.5], b=[0.0, 0.2])
|
|
|
|
nvblox_obs = mg.world_coll_checker.get_mesh_from_blox_layer(
|
|
"world",
|
|
)
|
|
# nvblox_obs.vertex_colors = None
|
|
|
|
if nvblox_obs.vertex_colors is not None:
|
|
nvblox_obs.vertex_colors = nvblox_obs.vertex_colors.cpu().numpy()
|
|
else:
|
|
nvblox_obs.color = [0.0, 0.0, 0.8, 0.8]
|
|
|
|
nvblox_obs.name = "nvblox_mesh_world"
|
|
world.add_obstacle(nvblox_obs)
|
|
|
|
coll_mesh = mg.world_coll_checker.get_mesh_in_bounding_box(
|
|
curobo_Cuboid(
|
|
name="test", pose=[0, 0, 0, 1, 0, 0, 0], dims=[1.5, 1.5, 1]
|
|
),
|
|
voxel_size=0.005,
|
|
)
|
|
|
|
coll_mesh.color = [0.0, 0.8, 0.8, 0.8]
|
|
|
|
coll_mesh.name = "nvblox_voxel_world"
|
|
world.add_obstacle(coll_mesh)
|
|
# run planner
|
|
if write_usd:
|
|
# CuRobo
|
|
from curobo.util.usd_helper import UsdHelper
|
|
|
|
q_traj = result.get_interpolated_plan()
|
|
UsdHelper.write_trajectory_animation_with_robot_usd(
|
|
robot_cfg,
|
|
world,
|
|
start_state,
|
|
q_traj,
|
|
dt=result.interpolation_dt,
|
|
save_path=join_path("benchmark/log/usd/", problem_name) + ".usd",
|
|
interpolation_steps=1,
|
|
write_robot_usd_path="benchmark/log/usd/assets/",
|
|
robot_usd_local_reference="assets/",
|
|
base_frame="/world_" + problem_name,
|
|
visualize_robot_spheres=True,
|
|
# flatten_usd=True,
|
|
)
|
|
# write_usd = False
|
|
# exit()
|
|
if write_plot:
|
|
problem_name = problem_name
|
|
plot_traj(
|
|
result.optimized_plan,
|
|
result.optimized_dt.item(),
|
|
# result.get_interpolated_plan(),
|
|
# result.interpolation_dt,
|
|
title=problem_name,
|
|
save_path=join_path("benchmark/log/plot/", problem_name + ".pdf"),
|
|
)
|
|
plot_traj(
|
|
# result.optimized_plan,
|
|
# result.optimized_dt.item(),
|
|
result.get_interpolated_plan(),
|
|
result.interpolation_dt,
|
|
title=problem_name,
|
|
save_path=join_path("benchmark/log/plot/", problem_name + "_int.pdf"),
|
|
)
|
|
|
|
m_list.append(current_metrics)
|
|
all_groups.append(current_metrics)
|
|
elif result.valid_query:
|
|
current_metrics = CuroboMetrics()
|
|
debug = {
|
|
"used_graph": result.used_graph,
|
|
"attempts": result.attempts,
|
|
"ik_time": result.ik_time,
|
|
"graph_time": result.graph_time,
|
|
"trajopt_time": result.trajopt_time,
|
|
"total_time": result.total_time,
|
|
"solve_time": result.solve_time,
|
|
"status": result.status,
|
|
"valid_query": result.valid_query,
|
|
}
|
|
problem["solution_debug"] = debug
|
|
|
|
m_list.append(current_metrics)
|
|
all_groups.append(current_metrics)
|
|
else:
|
|
# print("invalid: " + problem_name)
|
|
debug = {
|
|
"used_graph": result.used_graph,
|
|
"attempts": result.attempts,
|
|
"ik_time": result.ik_time,
|
|
"graph_time": result.graph_time,
|
|
"trajopt_time": result.trajopt_time,
|
|
"total_time": result.total_time,
|
|
"solve_time": result.solve_time,
|
|
"status": result.status,
|
|
"valid_query": result.valid_query,
|
|
}
|
|
problem["solution_debug"] = debug
|
|
if save_log and not result.success.item():
|
|
# CuRobo
|
|
from curobo.util.usd_helper import UsdHelper
|
|
|
|
UsdHelper.write_motion_gen_log(
|
|
result,
|
|
robot_cfg,
|
|
world,
|
|
start_state,
|
|
Pose.from_list(pose),
|
|
join_path("benchmark/log/usd/", problem_name) + "_debug",
|
|
write_ik=True,
|
|
write_trajopt=True,
|
|
visualize_robot_spheres=True,
|
|
grid_space=2,
|
|
# flatten_usd=True,
|
|
)
|
|
exit()
|
|
g_m = CuroboGroupMetrics.from_list(m_list)
|
|
print(
|
|
key,
|
|
f"{g_m.success:2.2f}",
|
|
g_m.time.mean,
|
|
# g_m.time.percent_75,
|
|
g_m.time.percent_98,
|
|
g_m.position_error.percent_98,
|
|
# g_m.position_error.median,
|
|
g_m.orientation_error.percent_98,
|
|
g_m.cspace_path_length.percent_98,
|
|
g_m.motion_time.percent_98,
|
|
g_m.perception_interpolated_success,
|
|
# g_m.orientation_error.median,
|
|
)
|
|
print(g_m.attempts)
|
|
g_m = CuroboGroupMetrics.from_list(all_groups)
|
|
print(
|
|
"All: ",
|
|
f"{g_m.success:2.2f}",
|
|
g_m.motion_time.percent_98,
|
|
g_m.time.mean,
|
|
g_m.time.percent_75,
|
|
g_m.position_error.percent_75,
|
|
g_m.orientation_error.percent_75,
|
|
g_m.perception_success,
|
|
)
|
|
print(g_m.attempts)
|
|
if write_benchmark:
|
|
if not mpinets_data:
|
|
write_yaml(problems, "mb_curobo_solution_nvblox.yaml")
|
|
else:
|
|
write_yaml(problems, "mpinets_curobo_solution_nvblox.yaml")
|
|
all_files += all_groups
|
|
g_m = CuroboGroupMetrics.from_list(all_files)
|
|
print("######## FULL SET ############")
|
|
print("All: ", f"{g_m.success:2.2f}")
|
|
print(
|
|
"Perception Success (coarse, interpolated):",
|
|
g_m.perception_success,
|
|
g_m.perception_interpolated_success,
|
|
)
|
|
print("MT: ", g_m.motion_time)
|
|
print("PT:", g_m.time)
|
|
print("ST: ", g_m.solve_time)
|
|
print("accuracy: ", g_m.position_error, g_m.orientation_error)
|
|
print("Jerk: ", g_m.jerk)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
setup_curobo_logger("error")
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--graph",
|
|
action="store_true",
|
|
help="When True, runs only geometric planner",
|
|
default=False,
|
|
)
|
|
parser.add_argument(
|
|
"--disable_cuda_graph",
|
|
action="store_true",
|
|
help="When True, disable cuda graph during benchmarking",
|
|
default=False,
|
|
)
|
|
args = parser.parse_args()
|
|
benchmark_mb(
|
|
save_log=False,
|
|
write_usd=False,
|
|
write_plot=False,
|
|
write_benchmark=False,
|
|
plot_cost=False,
|
|
args=args,
|
|
)
|