150 lines
4.5 KiB
Python
150 lines
4.5 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
# Third Party
|
|
import pytest
|
|
import torch
|
|
|
|
# CuRobo
|
|
from curobo.geom.sdf.world import (
|
|
CollisionCheckerType,
|
|
WorldCollisionConfig,
|
|
WorldPrimitiveCollision,
|
|
)
|
|
from curobo.geom.sdf.world_mesh import WorldMeshCollision
|
|
from curobo.geom.types import WorldConfig
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.math import Pose
|
|
from curobo.types.robot import RobotConfig
|
|
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
|
|
from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig
|
|
|
|
|
|
def ik_base_config():
|
|
tensor_args = TensorDeviceType()
|
|
world_file = "collision_cubby.yml"
|
|
|
|
robot_file = "franka.yml"
|
|
robot_cfg = RobotConfig.from_dict(
|
|
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
|
)
|
|
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
|
|
ik_config = IKSolverConfig.load_from_robot_config(
|
|
robot_cfg,
|
|
world_cfg,
|
|
rotation_threshold=0.05,
|
|
position_threshold=0.005,
|
|
num_seeds=100,
|
|
self_collision_check=True,
|
|
self_collision_opt=True,
|
|
tensor_args=tensor_args,
|
|
use_cuda_graph=False,
|
|
n_collision_envs=1,
|
|
collision_cache={"obb": 10},
|
|
)
|
|
return ik_config
|
|
|
|
|
|
def ik_gd_config():
|
|
tensor_args = TensorDeviceType()
|
|
world_file = "collision_cubby.yml"
|
|
|
|
robot_file = "franka.yml"
|
|
robot_cfg = RobotConfig.from_dict(
|
|
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
|
)
|
|
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
|
|
ik_config = IKSolverConfig.load_from_robot_config(
|
|
robot_cfg,
|
|
world_cfg,
|
|
rotation_threshold=0.05,
|
|
position_threshold=0.005,
|
|
num_seeds=100,
|
|
self_collision_check=True,
|
|
self_collision_opt=True,
|
|
tensor_args=tensor_args,
|
|
use_cuda_graph=False,
|
|
use_gradient_descent=True,
|
|
grad_iters=100,
|
|
)
|
|
return ik_config
|
|
|
|
|
|
def ik_es_config():
|
|
tensor_args = TensorDeviceType()
|
|
world_file = "collision_cubby.yml"
|
|
|
|
robot_file = "franka.yml"
|
|
robot_cfg = RobotConfig.from_dict(
|
|
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
|
)
|
|
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
|
|
ik_config = IKSolverConfig.load_from_robot_config(
|
|
robot_cfg,
|
|
world_cfg,
|
|
rotation_threshold=0.05,
|
|
position_threshold=0.005,
|
|
num_seeds=100,
|
|
self_collision_check=True,
|
|
self_collision_opt=True,
|
|
tensor_args=tensor_args,
|
|
use_cuda_graph=False,
|
|
use_es=True,
|
|
es_learning_rate=0.01,
|
|
use_fixed_samples=True,
|
|
)
|
|
return ik_config
|
|
|
|
|
|
def ik_no_particle_opt_config():
|
|
tensor_args = TensorDeviceType()
|
|
world_file = "collision_cubby.yml"
|
|
|
|
robot_file = "franka.yml"
|
|
robot_cfg = RobotConfig.from_dict(
|
|
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
|
)
|
|
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
|
|
ik_config = IKSolverConfig.load_from_robot_config(
|
|
robot_cfg,
|
|
world_cfg,
|
|
rotation_threshold=0.05,
|
|
position_threshold=0.005,
|
|
num_seeds=100,
|
|
self_collision_check=True,
|
|
self_collision_opt=True,
|
|
tensor_args=tensor_args,
|
|
use_cuda_graph=False,
|
|
use_particle_opt=False,
|
|
grad_iters=100,
|
|
)
|
|
return ik_config
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"config, expected",
|
|
[
|
|
(ik_base_config(), True),
|
|
(ik_es_config(), True),
|
|
(ik_gd_config(), True),
|
|
(ik_no_particle_opt_config(), True),
|
|
],
|
|
)
|
|
def test_eval(config, expected):
|
|
ik_solver = IKSolver(config)
|
|
q_sample = ik_solver.sample_configs(1)
|
|
kin_state = ik_solver.fk(q_sample)
|
|
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
|
|
result = ik_solver.solve_single(goal)
|
|
result = ik_solver.solve_single(goal)
|
|
|
|
success = result.success
|
|
assert success.item() == expected
|