Files
gen_data_curobo/benchmark/curobo_python_profile.py
2024-04-03 18:42:01 -07:00

299 lines
9.8 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Standard Library
import argparse
import cProfile
import time
# Third Party
import torch
from torch.profiler import ProfilerActivity, profile, record_function
# CuRobo
from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel, CudaRobotModelConfig
from curobo.geom.sdf.world import CollisionCheckerType
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import JointState, RobotConfig
from curobo.util.logger import setup_curobo_logger
from curobo.util_file import get_robot_configs_path, get_robot_path, join_path, load_yaml
from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
def demo_motion_gen(robot_file, motion_gen=None):
st_time = time.time()
if motion_gen is None:
setup_curobo_logger("warn")
# Standard Library
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "ur5e.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
trajopt_tsteps=32,
collision_checker_type=CollisionCheckerType.PRIMITIVE,
use_cuda_graph=True,
num_trajopt_seeds=4,
num_graph_seeds=4,
evaluate_interpolated_trajectory=True,
interpolation_dt=0.02,
)
motion_gen = MotionGen(motion_gen_config)
# st_time = time.time()
torch.cuda.synchronize()
print("LOAD TIME: ", time.time() - st_time)
st_time = time.time()
motion_gen.warmup(enable_graph=True, warmup_js_trajopt=False)
torch.cuda.synchronize()
print("warmup TIME: ", time.time() - st_time)
return motion_gen
# print(time.time() - st_time)
# return
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.rollout_fn.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze())
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
result = motion_gen.plan(
start_state,
retract_pose,
enable_graph=False,
enable_opt=True,
max_attempts=1,
# need_graph_success=True,
)
traj = result.get_interpolated_plan() # $.position.view(-1, 7) # optimized plan
print("Trajectory Generated: ", result.success, time.time() - st_time)
return motion_gen
def demo_basic_ik(config_file="ur10e.yml"):
st_time = time.time()
tensor_args = TensorDeviceType()
config_file = load_yaml(join_path(get_robot_configs_path(), config_file))
urdf_file = config_file["kinematics"]["urdf_path"] # Send global path starting with "/"
base_link = config_file["kinematics"]["base_link"]
ee_link = config_file["kinematics"]["ee_link"]
robot_cfg = RobotConfig.from_basic(urdf_file, base_link, ee_link, tensor_args)
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
None,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=20,
self_collision_check=False,
self_collision_opt=False,
tensor_args=tensor_args,
use_cuda_graph=False,
)
ik_solver = IKSolver(ik_config)
torch.cuda.synchronize()
print("IK load time:", time.time() - st_time)
st_time = time.time()
# print(kin_state)
q_sample = ik_solver.sample_configs(100)
kin_state = ik_solver.fk(q_sample)
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
torch.cuda.synchronize()
print("FK time:", time.time() - st_time)
st_time = time.time()
result = ik_solver.solve_batch(goal)
torch.cuda.synchronize()
print(
"Cold Start Solve Time(s) ",
result.solve_time,
)
def demo_basic_robot():
st_time = time.time()
tensor_args = TensorDeviceType()
# load a urdf:
config_file = load_yaml(join_path(get_robot_path(), "franka.yml"))
urdf_file = config_file["robot_cfg"]["kinematics"][
"urdf_path"
] # Send global path starting with "/"
base_link = config_file["robot_cfg"]["kinematics"]["base_link"]
ee_link = config_file["robot_cfg"]["kinematics"]["ee_link"]
robot_cfg = RobotConfig.from_basic(urdf_file, base_link, ee_link, tensor_args)
kin_model = CudaRobotModel(robot_cfg.kinematics)
print("base kin time:", time.time() - st_time)
return
# compute forward kinematics:
# q = torch.rand((10, kin_model.get_dof()), **vars(tensor_args))
# out = kin_model.get_state(q)
# here is the kinematics state:
# print(out)
def demo_full_config_robot(config_file):
st_time = time.time()
tensor_args = TensorDeviceType()
# load a urdf:
robot_cfg = RobotConfig.from_dict(config_file, tensor_args)
# kin_model = CudaRobotModel(robot_cfg.kinematics)
print("full kin time: ", time.time() - st_time)
# compute forward kinematics:
# q = torch.rand((10, kin_model.get_dof()), **vars(tensor_args))
# out = kin_model.get_state(q)
# here is the kinematics state:
# print(out)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_path",
type=str,
default="benchmark/log/trace",
help="path to save file",
)
parser.add_argument(
"--file_name",
type=str,
default="startup_trace",
help="File name prefix to use to save benchmark results",
)
parser.add_argument(
"--motion_gen",
action="store_true",
help="When True, runs startup for motion generation",
default=False,
)
parser.add_argument(
"--motion_gen_plan",
action="store_true",
help="When True, runs startup for motion generation",
default=False,
)
parser.add_argument(
"--kinematics",
action="store_true",
help="When True, runs startup for kinematics",
default=False,
)
parser.add_argument(
"--inverse_kinematics",
action="store_true",
help="When True, runs startup for kinematics",
default=False,
)
parser.add_argument(
"--motion_gen_once",
action="store_true",
help="When True, runs startup for kinematics",
default=False,
)
args = parser.parse_args()
# cProfile.run('demo_motion_gen()')
config_file = load_yaml(join_path(get_robot_path(), "franka.yml"))["robot_cfg"]
# Third Party
if args.kinematics:
for _ in range(5):
demo_full_config_robot(config_file)
pr = cProfile.Profile()
pr.enable()
demo_full_config_robot(config_file)
pr.disable()
filename = join_path(args.save_path, args.file_name) + "_kinematics_cprofile.prof"
pr.dump_stats(filename)
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
demo_full_config_robot(config_file)
filename = join_path(args.save_path, args.file_name) + "_kinematics_trace.json"
prof.export_chrome_trace(filename)
if args.inverse_kinematics:
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
demo_basic_ik(config_file)
filename = join_path(args.save_path, args.file_name) + "_inverse_kinematics_trace.json"
prof.export_chrome_trace(filename)
pr = cProfile.Profile()
pr.enable()
demo_basic_ik(config_file)
pr.disable()
filename = join_path(args.save_path, args.file_name) + "_inverse_kinematics_cprofile.prof"
pr.dump_stats(filename)
if args.motion_gen_once:
pr = cProfile.Profile()
pr.enable()
demo_motion_gen(config_file)
pr.disable()
filename = join_path(args.save_path, args.file_name) + "_motion_gen_cprofile.prof"
pr.dump_stats(filename)
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
demo_motion_gen(config_file)
filename = join_path(args.save_path, args.file_name) + "_motion_gen_trace.json"
prof.export_chrome_trace(filename)
if args.motion_gen_plan:
motion_gen = demo_motion_gen(config_file)
pr = cProfile.Profile()
pr.enable()
demo_motion_gen(config_file, motion_gen)
pr.disable()
filename = join_path(args.save_path, args.file_name) + "_motion_gen_plan_cprofile.prof"
pr.dump_stats(filename)
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
demo_motion_gen(config_file, motion_gen)
filename = join_path(args.save_path, args.file_name) + "_motion_gen_plan_trace.json"
prof.export_chrome_trace(filename)
if args.motion_gen:
for _ in range(5):
demo_motion_gen(config_file)
pr = cProfile.Profile()
pr.enable()
demo_motion_gen(config_file)
pr.disable()
filename = join_path(args.save_path, args.file_name) + "_motion_gen_cprofile.prof"
pr.dump_stats(filename)
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
demo_motion_gen(config_file)
filename = join_path(args.save_path, args.file_name) + "_motion_gen_trace.json"
prof.export_chrome_trace(filename)