333 lines
9.9 KiB
Python
333 lines
9.9 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
# Third Party
|
|
import pytest
|
|
import torch
|
|
|
|
# CuRobo
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.math import Pose
|
|
from curobo.types.robot import JointState
|
|
from curobo.wrap.reacher.motion_gen import (
|
|
MotionGen,
|
|
MotionGenConfig,
|
|
MotionGenPlanConfig,
|
|
PoseCostMetric,
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def motion_gen(request):
|
|
tensor_args = TensorDeviceType()
|
|
world_file = "collision_table.yml"
|
|
robot_file = "franka.yml"
|
|
|
|
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
|
robot_file,
|
|
world_file,
|
|
tensor_args,
|
|
use_cuda_graph=True,
|
|
project_pose_to_goal_frame=request.param[0],
|
|
)
|
|
motion_gen_instance = MotionGen(motion_gen_config)
|
|
|
|
motion_gen_instance.warmup(
|
|
enable_graph=False, warmup_js_trajopt=False, n_goalset=request.param[1]
|
|
)
|
|
return motion_gen_instance
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen",
|
|
[
|
|
([True, -1]),
|
|
([False, -1]),
|
|
([True, 10]),
|
|
([False, 10]),
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_approach_grasp_pose(motion_gen):
|
|
# run full pose planning
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = state.ee_pose.clone()
|
|
goal_pose.position[0, 0] -= 0.1
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
|
|
m_config = MotionGenPlanConfig(max_attempts=1)
|
|
|
|
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
|
|
|
|
assert torch.count_nonzero(result.success) == 1
|
|
|
|
# run grasp pose planning:
|
|
m_config.pose_cost_metric = PoseCostMetric.create_grasp_approach_metric()
|
|
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
|
|
|
|
assert torch.count_nonzero(result.success) == 1
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen",
|
|
[
|
|
([True, -1]),
|
|
([False, -1]),
|
|
([True, 10]),
|
|
([False, 10]),
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_reach_only_position(motion_gen):
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = state.ee_pose.clone()
|
|
goal_pose.position[0, 0] -= 0.1
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
m_config = MotionGenPlanConfig(
|
|
max_attempts=1,
|
|
pose_cost_metric=PoseCostMetric(
|
|
reach_partial_pose=True,
|
|
reach_vec_weight=motion_gen.tensor_args.to_device([0, 0, 0, 1, 1, 1]),
|
|
),
|
|
)
|
|
|
|
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
|
|
|
|
assert torch.count_nonzero(result.success) == 1
|
|
|
|
reached_state = result.optimized_plan[-1]
|
|
reached_pose = motion_gen.compute_kinematics(reached_state).ee_pose.clone()
|
|
assert goal_pose.angular_distance(reached_pose) > 0.0
|
|
assert goal_pose.linear_distance(reached_pose) <= 0.005
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen",
|
|
[
|
|
([True, -1]),
|
|
([False, -1]),
|
|
([True, 10]),
|
|
([False, 10]),
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_reach_only_orientation(motion_gen):
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = state.ee_pose.clone()
|
|
goal_pose.position[0, 0] -= 0.1
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
m_config = MotionGenPlanConfig(
|
|
max_attempts=1,
|
|
pose_cost_metric=PoseCostMetric(
|
|
reach_partial_pose=True,
|
|
reach_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 0, 0, 0]),
|
|
),
|
|
)
|
|
|
|
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
|
|
|
|
assert torch.count_nonzero(result.success) == 1
|
|
|
|
reached_state = result.optimized_plan[-1]
|
|
reached_pose = motion_gen.compute_kinematics(reached_state).ee_pose.clone()
|
|
assert goal_pose.linear_distance(reached_pose) > 0.0
|
|
assert goal_pose.angular_distance(reached_pose) < 0.05
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen",
|
|
[
|
|
([True, -1]),
|
|
([False, -1]),
|
|
([True, 10]),
|
|
([False, 10]),
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_hold_orientation(motion_gen):
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = state.ee_pose.clone()
|
|
goal_pose.position[0, 0] -= 0.1
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
|
|
start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone()
|
|
goal_pose.quaternion = start_pose.quaternion.clone()
|
|
m_config = MotionGenPlanConfig(
|
|
max_attempts=1,
|
|
pose_cost_metric=PoseCostMetric(
|
|
hold_partial_pose=True,
|
|
hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 0, 0, 0]),
|
|
),
|
|
)
|
|
|
|
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
|
|
|
|
assert torch.count_nonzero(result.success) == 1
|
|
|
|
traj_pose = motion_gen.compute_kinematics(result.optimized_plan).ee_pose.clone()
|
|
|
|
# assert goal_pose.linear_distance(traj_pose) > 0.0
|
|
goal_pose = goal_pose.repeat(traj_pose.shape[0])
|
|
assert torch.max(goal_pose.angular_distance(traj_pose)) < 0.05
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen",
|
|
[
|
|
([True, -1]),
|
|
([False, -1]),
|
|
([True, 10]),
|
|
([False, 10]),
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_hold_position(motion_gen):
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = state.ee_pose.clone()
|
|
goal_pose.position[0, 0] -= 0.1
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
|
|
start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone()
|
|
goal_pose.position = start_pose.position.clone()
|
|
m_config = MotionGenPlanConfig(
|
|
max_attempts=1,
|
|
pose_cost_metric=PoseCostMetric(
|
|
hold_partial_pose=True,
|
|
hold_vec_weight=motion_gen.tensor_args.to_device([0, 0, 0, 1, 1, 1]),
|
|
),
|
|
)
|
|
|
|
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
|
|
|
|
assert torch.count_nonzero(result.success) == 1
|
|
|
|
traj_pose = motion_gen.compute_kinematics(result.optimized_plan).ee_pose.clone()
|
|
|
|
goal_pose = goal_pose.repeat(traj_pose.shape[0])
|
|
assert torch.max(goal_pose.linear_distance(traj_pose)) < 0.005
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen",
|
|
[
|
|
([True, -1]),
|
|
([False, -1]),
|
|
([True, 10]),
|
|
([False, 10]),
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_hold_partial_pose(motion_gen):
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = state.ee_pose.clone()
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
|
|
start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone()
|
|
goal_pose.position = start_pose.position.clone()
|
|
goal_pose.quaternion = start_pose.quaternion.clone()
|
|
|
|
if motion_gen.project_pose_to_goal_frame:
|
|
offset_pose = Pose.from_list([0, 0.1, 0, 1, 0, 0, 0])
|
|
goal_pose = goal_pose.multiply(offset_pose)
|
|
else:
|
|
goal_pose.position[0, 1] += 0.2
|
|
|
|
m_config = MotionGenPlanConfig(
|
|
max_attempts=1,
|
|
pose_cost_metric=PoseCostMetric(
|
|
hold_partial_pose=True,
|
|
hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 1, 0, 1]),
|
|
),
|
|
)
|
|
|
|
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
|
|
assert torch.count_nonzero(result.success) == 1
|
|
|
|
traj_pose = motion_gen.compute_kinematics(result.optimized_plan).ee_pose.clone()
|
|
|
|
goal_pose = goal_pose.repeat(traj_pose.shape[0])
|
|
if motion_gen.project_pose_to_goal_frame:
|
|
traj_pose = goal_pose.compute_local_pose(traj_pose)
|
|
traj_pose.position[:, 1] = 0.0
|
|
assert torch.max(traj_pose.position) < 0.005
|
|
|
|
else:
|
|
goal_pose.position[:, 1] = 0.0
|
|
traj_pose.position[:, 1] = 0.0
|
|
assert torch.max(goal_pose.linear_distance(traj_pose)) < 0.005
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen",
|
|
[
|
|
([True, -1]),
|
|
([False, -1]),
|
|
([True, 10]),
|
|
([False, 10]),
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_hold_partial_pose_fail(motion_gen):
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = state.ee_pose.clone()
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
|
|
start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone()
|
|
goal_pose.position = start_pose.position.clone()
|
|
goal_pose.quaternion = start_pose.quaternion.clone()
|
|
|
|
if motion_gen.project_pose_to_goal_frame:
|
|
offset_pose = Pose.from_list([0, 0.1, 0.1, 1, 0, 0, 0])
|
|
goal_pose = goal_pose.multiply(offset_pose)
|
|
else:
|
|
goal_pose.position[0, 1] += 0.2
|
|
goal_pose.position[0, 0] += 0.2
|
|
|
|
m_config = MotionGenPlanConfig(
|
|
max_attempts=1,
|
|
pose_cost_metric=PoseCostMetric(
|
|
hold_partial_pose=True,
|
|
hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 1, 0, 1]),
|
|
),
|
|
)
|
|
|
|
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
|
|
assert torch.count_nonzero(result.success) == 0
|
|
assert result.valid_query == False
|