Files
gen_data_curobo/benchmark/curobo_profile.py
Balakumar Sundaralingam 58958bbcce update to 0.6.2
2023-12-15 02:01:33 -08:00

189 lines
6.0 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Standard Library
import argparse
import time
from typing import Any, Dict, List
# Third Party
import numpy as np
import torch
# from geometrout.primitive import Cuboid, Cylinder
# from geometrout.transform import SE3
# from robometrics.robot import CollisionSphereConfig, Robot
from torch.profiler import ProfilerActivity, profile, record_function
from tqdm import tqdm
# CuRobo
from curobo.geom.sdf.world import CollisionCheckerType, WorldConfig
from curobo.geom.types import Mesh
from curobo.types.math import Pose
from curobo.types.state import JointState
from curobo.util.logger import setup_curobo_logger
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
# torch.set_num_threads(8)
# ttorch.use_deterministic_algorithms(True)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
np.random.seed(10)
# Third Party
from robometrics.datasets import demo_raw
def load_curobo(
n_cubes: int, enable_log: bool = False, mesh_mode: bool = False, cuda_graph: bool = False
):
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
robot_cfg["kinematics"]["collision_sphere_buffer"] = -0.0
world_cfg = WorldConfig.from_dict(
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
).get_obb_world()
c_checker = CollisionCheckerType.PRIMITIVE
c_cache = {"obb": n_cubes}
if mesh_mode:
c_checker = CollisionCheckerType.MESH
c_cache = {"mesh": n_cubes}
world_cfg = world_cfg.get_mesh_world()
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_cfg,
world_cfg,
trajopt_tsteps=32,
collision_checker_type=c_checker,
use_cuda_graph=cuda_graph,
collision_cache=c_cache,
ee_link_name="panda_hand",
position_threshold=0.005,
rotation_threshold=0.05,
num_ik_seeds=30,
num_trajopt_seeds=10,
interpolation_dt=0.02,
# grad_trajopt_iters=200,
store_ik_debug=enable_log,
store_trajopt_debug=enable_log,
)
mg = MotionGen(motion_gen_config)
mg.warmup(enable_graph=False)
return mg
def benchmark_mb(args):
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
spheres = robot_cfg["kinematics"]["collision_spheres"]
if isinstance(spheres, str):
spheres = load_yaml(join_path(get_robot_configs_path(), spheres))["collision_spheres"]
plan_config = MotionGenPlanConfig(
max_attempts=2,
enable_graph_attempt=3,
enable_finetune_trajopt=True,
partial_ik_opt=False,
enable_graph=False,
)
# load dataset:
file_paths = [demo_raw]
all_files = []
for file_path in file_paths:
all_groups = []
problems = file_path()
for key, v in tqdm(problems.items()):
# if key not in ["table_under_pick_panda"]:
# continue
scene_problems = problems[key] # [:2]
n_cubes = check_problems(scene_problems)
mg = load_curobo(n_cubes, False, args.mesh, args.cuda_graph)
m_list = []
i = 0
for problem in tqdm(scene_problems, leave=False):
q_start = problem["start"]
pose = (
problem["goal_pose"]["position_xyz"] + problem["goal_pose"]["quaternion_wxyz"]
)
# reset planner
mg.reset(reset_seed=False)
if args.mesh:
world = WorldConfig.from_dict(problem["obstacles"]).get_mesh_world()
else:
world = WorldConfig.from_dict(problem["obstacles"]).get_obb_world()
mg.update_world(world)
# continue
# load obstacles
# run planner
start_state = JointState.from_position(mg.tensor_args.to_device([q_start]))
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
result = mg.plan_single(
start_state,
Pose.from_list(pose),
plan_config,
)
print("Exporting the trace..")
prof.export_chrome_trace(join_path(args.save_path, args.file_name) + ".json")
print(result.success, result.status)
exit()
def check_problems(all_problems):
n_cube = 0
for problem in all_problems:
cache = WorldConfig.from_dict(problem["obstacles"]).get_obb_world().get_cache_dict()
n_cube = max(n_cube, cache["obb"])
return n_cube
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_path",
type=str,
default="benchmark/log/trace",
help="path to save file",
)
parser.add_argument(
"--file_name",
type=str,
default="motion_gen_trace",
help="File name prefix to use to save benchmark results",
)
parser.add_argument(
"--mesh",
action="store_true",
help="When True, converts obstacles to meshes",
default=False,
)
parser.add_argument(
"--cuda_graph",
action="store_true",
help="When True, uses cuda graph during profiing",
default=False,
)
args = parser.parse_args()
setup_curobo_logger("error")
benchmark_mb(args)