Files
gen_data_curobo/src/curobo/rollout/cost/manipulability_cost.py
Balakumar Sundaralingam 07e6ccfc91 release repository
2023-10-26 04:17:19 -07:00

108 lines
3.7 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Standard Library
from dataclasses import dataclass
from itertools import product
# Third Party
import torch
# Local Folder
from .cost_base import CostBase, CostConfig
@dataclass
class ManipulabilityCostConfig(CostConfig):
use_joint_limits: bool = False
def __post_init__(self):
return super().__post_init__()
class ManipulabilityCost(CostBase, ManipulabilityCostConfig):
def __init__(self, config: ManipulabilityCostConfig):
ManipulabilityCostConfig.__init__(self, **vars(config))
CostBase.__init__(self)
self.i_mat = torch.ones(
(6, 1), device=self.tensor_args.device, dtype=self.tensor_args.dtype
)
self.delta_vector = torch.zeros(
(64, 1, 1, 6, 1), device=self.tensor_args.device, dtype=self.tensor_args.dtype
)
x = [i for i in product(range(2), repeat=6)]
self.delta_vector[:, 0, 0, :, 0] = torch.as_tensor(
x, device=self.tensor_args.device, dtype=self.tensor_args.dtype
)
self.delta_vector[self.delta_vector == 0] = -1.0
if self.cost_fn is None:
if self.use_joint_limits and self.joint_limits is not None:
self.cost_fn = self.joint_limited_manipulability_delta
else:
self.cost_fn = self.manipulability
def forward(self, jac_batch, q, qdot):
b, h, n = q.shape
if self.use_nn:
q = q.view(b * h, n)
score = self.cost_fn(q, jac_batch, qdot)
if self.use_nn:
score = score.view(b, h)
score[score > self.hinge_value] = self.hinge_value
score = (self.hinge_value / score) - 1
cost = self.weight * score
return cost
def manipulability(self, q, jac_batch, qdot=None):
with torch.cuda.amp.autocast(enabled=False):
J_J_t = torch.matmul(jac_batch, jac_batch.transpose(-2, -1))
score = torch.sqrt(torch.det(J_J_t))
score[score != score] = 0.0
return score
def joint_limited_manipulability_delta(self, q, jac_batch, qdot=None):
# q is [b,h,dof]
q_low = q - self.joint_limits[:, 0]
q_high = q - self.joint_limits[:, 1]
d_h_1 = torch.square(self.joint_limits[:, 1] - self.joint_limits[:, 0]) * (q_low + q_high)
d_h_2 = 4.0 * (torch.square(q_low) * torch.square(q_high))
d_h = torch.div(d_h_1, d_h_2)
dh_term = 1.0 / torch.sqrt(1 + torch.abs(d_h))
f_ten = torch.tensor(1.0, **self.tensor_args)
q_low = torch.abs(q_low)
q_high = torch.abs(q_high)
p_plus = torch.where(q_low > q_high, dh_term, f_ten).unsqueeze(-2)
p_minus = torch.where(q_low > q_high, f_ten, dh_term).unsqueeze(-2)
j_sign = torch.sign(jac_batch)
l_delta = torch.sign(self.delta_vector) * j_sign
L = torch.where(l_delta < 0.0, p_minus, p_plus)
with torch.cuda.amp.autocast(enabled=False):
w_J = L * jac_batch
J_J_t = torch.matmul(w_J, w_J.transpose(-2, -1))
score = torch.sqrt(torch.det(J_J_t))
# get actual score:
min_score = torch.min(score, dim=0)[0]
max_score = torch.max(score, dim=0)[0]
score = min_score / max_score
score[score != score] = 0.0
return score