67 lines
2.1 KiB
Python
67 lines
2.1 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
""" Example computing fk using curobo
|
|
|
|
"""
|
|
# Third Party
|
|
import torch
|
|
|
|
# CuRobo
|
|
from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.robot import RobotConfig
|
|
from curobo.util.logger import setup_curobo_logger
|
|
from curobo.util_file import get_robot_path, join_path, load_yaml
|
|
|
|
|
|
def demo_basic_robot():
|
|
tensor_args = TensorDeviceType()
|
|
|
|
# load a urdf:
|
|
config_file = load_yaml(join_path(get_robot_path(), "franka.yml"))
|
|
|
|
urdf_file = config_file["robot_cfg"]["kinematics"][
|
|
"urdf_path"
|
|
] # Send global path starting with "/"
|
|
base_link = config_file["robot_cfg"]["kinematics"]["base_link"]
|
|
ee_link = config_file["robot_cfg"]["kinematics"]["ee_link"]
|
|
robot_cfg = RobotConfig.from_basic(urdf_file, base_link, ee_link, tensor_args)
|
|
|
|
kin_model = CudaRobotModel(robot_cfg.kinematics)
|
|
|
|
# compute forward kinematics:
|
|
|
|
q = torch.rand((10, kin_model.get_dof()), **(tensor_args.as_torch_dict()))
|
|
out = kin_model.get_state(q)
|
|
# here is the kinematics state:
|
|
# print(out)
|
|
|
|
|
|
def demo_full_config_robot():
|
|
setup_curobo_logger("info")
|
|
tensor_args = TensorDeviceType()
|
|
# load a urdf:
|
|
config_file = load_yaml(join_path(get_robot_path(), "franka.yml"))["robot_cfg"]
|
|
robot_cfg = RobotConfig.from_dict(config_file, tensor_args)
|
|
|
|
kin_model = CudaRobotModel(robot_cfg.kinematics)
|
|
|
|
# compute forward kinematics:
|
|
q = torch.rand((10, kin_model.get_dof()), **(tensor_args.as_torch_dict()))
|
|
out = kin_model.get_state(q)
|
|
# here is the kinematics state:
|
|
# print(out)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo_basic_robot()
|
|
demo_full_config_robot()
|