331 lines
11 KiB
Python
331 lines
11 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
# Third Party
|
|
import pytest
|
|
import torch
|
|
|
|
# CuRobo
|
|
from curobo.geom.types import WorldConfig
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.math import Pose
|
|
from curobo.types.robot import JointState, RobotConfig
|
|
from curobo.util.trajectory import InterpolateType
|
|
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
|
|
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def motion_gen():
|
|
tensor_args = TensorDeviceType()
|
|
world_file = "collision_table.yml"
|
|
robot_file = "franka.yml"
|
|
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
|
robot_file,
|
|
world_file,
|
|
tensor_args,
|
|
use_cuda_graph=False,
|
|
)
|
|
motion_gen_instance = MotionGen(motion_gen_config)
|
|
return motion_gen_instance
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def motion_gen_batch_env():
|
|
tensor_args = TensorDeviceType()
|
|
world_files = ["collision_table.yml", "collision_test.yml"]
|
|
world_cfg = [
|
|
WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
|
|
for world_file in world_files
|
|
]
|
|
robot_file = "franka.yml"
|
|
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
|
robot_file,
|
|
world_cfg,
|
|
tensor_args,
|
|
use_cuda_graph=False,
|
|
)
|
|
motion_gen_instance = MotionGen(motion_gen_config)
|
|
|
|
return motion_gen_instance
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen_str,interpolation",
|
|
[
|
|
("motion_gen", InterpolateType.LINEAR),
|
|
("motion_gen", InterpolateType.CUBIC),
|
|
# ("motion_gen", InterpolateType.KUNZ_STILMAN_OPTIMAL),
|
|
("motion_gen", InterpolateType.LINEAR_CUDA),
|
|
],
|
|
)
|
|
def test_motion_gen_single(motion_gen_str, interpolation, request):
|
|
motion_gen = request.getfixturevalue(motion_gen_str)
|
|
motion_gen.update_interpolation_type(interpolation)
|
|
motion_gen.reset()
|
|
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = Pose(state.ee_pos_seq, quaternion=state.ee_quat_seq)
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
|
|
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
|
|
|
result = motion_gen.plan_single(start_state, goal_pose, m_config)
|
|
|
|
# get final solutions:
|
|
assert torch.count_nonzero(result.success) == 1
|
|
reached_state = motion_gen.compute_kinematics(result.optimized_plan[-1])
|
|
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
|
|
|
|
|
|
def test_motion_gen_goalset(motion_gen):
|
|
motion_gen.reset()
|
|
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = Pose(
|
|
state.ee_pos_seq.repeat(2, 1).view(1, -1, 3),
|
|
quaternion=state.ee_quat_seq.repeat(2, 1).view(1, -1, 4),
|
|
)
|
|
goal_pose.position[0, 0, 0] -= 0.1
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
|
|
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
|
|
|
result = motion_gen.plan_goalset(start_state, goal_pose, m_config)
|
|
|
|
# get final solutions:
|
|
assert torch.count_nonzero(result.success) == 1
|
|
|
|
reached_state = motion_gen.compute_kinematics(result.optimized_plan[-1])
|
|
|
|
assert (
|
|
torch.min(
|
|
torch.norm(goal_pose.position[:, 0, :] - reached_state.ee_pos_seq),
|
|
torch.norm(goal_pose.position[:, 1, :] - reached_state.ee_pos_seq),
|
|
)
|
|
< 0.005
|
|
)
|
|
|
|
assert result.goalset_index is not None
|
|
|
|
assert (
|
|
torch.norm(goal_pose.position[:, result.goalset_index, :] - reached_state.ee_pos_seq)
|
|
< 0.005
|
|
)
|
|
|
|
|
|
def test_motion_gen_batch_goalset(motion_gen):
|
|
motion_gen.reset()
|
|
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = Pose(
|
|
state.ee_pos_seq.repeat(6, 1).view(3, -1, 3).clone(),
|
|
quaternion=state.ee_quat_seq.repeat(6, 1).view(3, -1, 4).clone(),
|
|
)
|
|
goal_pose.position[0, 1, 1] = 0.2
|
|
goal_pose.position[1, 0, 1] = 0.2
|
|
goal_pose.position[2, 1, 1] = 0.2
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.2).repeat_seeds(3)
|
|
|
|
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10, max_attempts=1)
|
|
|
|
result = motion_gen.plan_batch_goalset(start_state, goal_pose, m_config)
|
|
|
|
# get final solutions:
|
|
assert torch.count_nonzero(result.success) == result.success.shape[0]
|
|
|
|
reached_state = motion_gen.compute_kinematics(result.optimized_plan.trim_trajectory(-1))
|
|
|
|
#
|
|
goal_position = torch.cat(
|
|
[
|
|
goal_pose.position[x, result.goalset_index[x], :].unsqueeze(0)
|
|
for x in range(len(result.goalset_index))
|
|
]
|
|
)
|
|
|
|
assert result.goalset_index is not None
|
|
|
|
assert torch.max(torch.norm(goal_position - reached_state.ee_pos_seq, dim=-1)) < 0.005
|
|
|
|
|
|
def test_motion_gen_batch(motion_gen):
|
|
motion_gen.reset()
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = Pose(
|
|
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
|
|
).repeat_seeds(2)
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
|
|
|
|
goal_pose.position[1, 0] -= 0.1
|
|
|
|
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=12)
|
|
|
|
result = motion_gen.plan_batch(start_state, goal_pose.clone(), m_config)
|
|
assert torch.count_nonzero(result.success) == 2
|
|
|
|
# get final solutions:
|
|
q = result.optimized_plan.trim_trajectory(-1).squeeze(1)
|
|
reached_state = motion_gen.compute_kinematics(q)
|
|
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen_str,interpolation",
|
|
[
|
|
("motion_gen", InterpolateType.LINEAR),
|
|
("motion_gen", InterpolateType.CUBIC),
|
|
# ("motion_gen", InterpolateType.KUNZ_STILMAN_OPTIMAL),
|
|
("motion_gen", InterpolateType.LINEAR_CUDA),
|
|
],
|
|
)
|
|
def test_motion_gen_batch_graph(motion_gen_str: str, interpolation: InterpolateType, request):
|
|
motion_gen = request.getfixturevalue(motion_gen_str)
|
|
|
|
motion_gen.graph_planner.interpolation_type = interpolation
|
|
motion_gen.reset()
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
|
|
|
goal_pose = Pose(
|
|
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
|
|
).repeat_seeds(5)
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(5)
|
|
|
|
goal_pose.position[1, 0] -= 0.05
|
|
|
|
m_config = MotionGenPlanConfig(True, False)
|
|
|
|
result = motion_gen.plan_batch(start_state, goal_pose, m_config)
|
|
assert torch.count_nonzero(result.success) > 0
|
|
|
|
# get final solutions:
|
|
q = result.interpolated_plan.trim_trajectory(-1).squeeze(1)
|
|
reached_state = motion_gen.compute_kinematics(q)
|
|
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
|
|
|
|
|
|
def test_motion_gen_batch_env(motion_gen_batch_env):
|
|
motion_gen_batch_env.reset()
|
|
retract_cfg = motion_gen_batch_env.get_retract_config()
|
|
state = motion_gen_batch_env.compute_kinematics(
|
|
JointState.from_position(retract_cfg.view(1, -1))
|
|
)
|
|
|
|
goal_pose = Pose(
|
|
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
|
|
).repeat_seeds(2)
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
|
|
|
|
goal_pose.position[1, 0] -= 0.1
|
|
|
|
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
|
|
|
result = motion_gen_batch_env.plan_batch_env(start_state, goal_pose, m_config)
|
|
assert torch.count_nonzero(result.success) == 2
|
|
|
|
# get final solutions:
|
|
reached_state = motion_gen_batch_env.compute_kinematics(
|
|
result.optimized_plan.trim_trajectory(-1).squeeze(1)
|
|
)
|
|
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
|
|
|
|
|
|
def test_motion_gen_batch_env_goalset(motion_gen_batch_env):
|
|
motion_gen_batch_env.reset()
|
|
retract_cfg = motion_gen_batch_env.get_retract_config()
|
|
state = motion_gen_batch_env.compute_kinematics(
|
|
JointState.from_position(retract_cfg.view(1, -1))
|
|
)
|
|
|
|
goal_pose = Pose(
|
|
state.ee_pos_seq.repeat(4, 1).view(2, -1, 3),
|
|
quaternion=state.ee_quat_seq.repeat(4, 1).view(2, -1, 4),
|
|
)
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
|
|
|
|
goal_pose.position[1, 0] -= 0.2
|
|
|
|
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
|
|
|
result = motion_gen_batch_env.plan_batch_env_goalset(start_state, goal_pose, m_config)
|
|
assert torch.count_nonzero(result.success) > 0
|
|
|
|
# get final solutions:
|
|
reached_state = motion_gen_batch_env.compute_kinematics(
|
|
result.optimized_plan.trim_trajectory(-1).squeeze(1)
|
|
)
|
|
assert (
|
|
torch.min(
|
|
torch.norm(goal_pose.position[:, 0, :] - reached_state.ee_pos_seq),
|
|
torch.norm(goal_pose.position[:, 1, :] - reached_state.ee_pos_seq),
|
|
)
|
|
< 0.005
|
|
)
|
|
|
|
goal_position = torch.cat(
|
|
[
|
|
goal_pose.position[x, result.goalset_index[x], :].unsqueeze(0)
|
|
for x in range(len(result.goalset_index))
|
|
]
|
|
)
|
|
|
|
assert result.goalset_index is not None
|
|
|
|
assert torch.max(torch.norm(goal_position - reached_state.ee_pos_seq, dim=-1)) < 0.005
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"motion_gen_str,enable_graph",
|
|
[
|
|
("motion_gen", True),
|
|
("motion_gen", False),
|
|
],
|
|
)
|
|
def test_motion_gen_single_js(motion_gen_str, enable_graph, request):
|
|
motion_gen = request.getfixturevalue(motion_gen_str)
|
|
|
|
motion_gen.reset()
|
|
|
|
retract_cfg = motion_gen.get_retract_config()
|
|
|
|
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
|
|
|
m_config = MotionGenPlanConfig(enable_graph=enable_graph, max_attempts=2)
|
|
goal_state = start_state.clone()
|
|
goal_state.position -= 0.3
|
|
|
|
result = motion_gen.plan_single_js(start_state, goal_state, m_config)
|
|
|
|
assert torch.count_nonzero(result.success) == 1
|
|
|
|
reached_state = result.optimized_plan[-1]
|
|
|
|
assert torch.norm(goal_state.position - reached_state.position) < 0.005
|