Files
gen_data_curobo/tests/motion_gen_constrained_test.py
2024-02-22 21:45:47 -08:00

315 lines
9.4 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import pytest
import torch
# CuRobo
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import JointState
from curobo.wrap.reacher.motion_gen import (
MotionGen,
MotionGenConfig,
MotionGenPlanConfig,
PoseCostMetric,
)
@pytest.fixture(scope="module")
def motion_gen(request):
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
use_cuda_graph=True,
project_pose_to_goal_frame=request.param,
)
motion_gen_instance = MotionGen(motion_gen_config)
motion_gen_instance.warmup(enable_graph=False, warmup_js_trajopt=False)
return motion_gen_instance
@pytest.mark.parametrize(
"motion_gen",
[
(True),
(False),
],
indirect=True,
)
def test_approach_grasp_pose(motion_gen):
# run full pose planning
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = state.ee_pose.clone()
goal_pose.position[0, 0] -= 0.1
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
m_config = MotionGenPlanConfig(max_attempts=1)
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
assert torch.count_nonzero(result.success) == 1
# run grasp pose planning:
m_config.pose_cost_metric = PoseCostMetric.create_grasp_approach_metric()
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
assert torch.count_nonzero(result.success) == 1
@pytest.mark.parametrize(
"motion_gen",
[
(True),
(False),
],
indirect=True,
)
def test_reach_only_position(motion_gen):
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = state.ee_pose.clone()
goal_pose.position[0, 0] -= 0.1
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
m_config = MotionGenPlanConfig(
max_attempts=1,
pose_cost_metric=PoseCostMetric(
reach_partial_pose=True,
reach_vec_weight=motion_gen.tensor_args.to_device([0, 0, 0, 1, 1, 1]),
),
)
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
assert torch.count_nonzero(result.success) == 1
reached_state = result.optimized_plan[-1]
reached_pose = motion_gen.compute_kinematics(reached_state).ee_pose.clone()
assert goal_pose.angular_distance(reached_pose) > 0.0
assert goal_pose.linear_distance(reached_pose) <= 0.005
@pytest.mark.parametrize(
"motion_gen",
[
(True),
(False),
],
indirect=True,
)
def test_reach_only_orientation(motion_gen):
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = state.ee_pose.clone()
goal_pose.position[0, 0] -= 0.1
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
m_config = MotionGenPlanConfig(
max_attempts=1,
pose_cost_metric=PoseCostMetric(
reach_partial_pose=True,
reach_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 0, 0, 0]),
),
)
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
assert torch.count_nonzero(result.success) == 1
reached_state = result.optimized_plan[-1]
reached_pose = motion_gen.compute_kinematics(reached_state).ee_pose.clone()
assert goal_pose.linear_distance(reached_pose) > 0.0
assert goal_pose.angular_distance(reached_pose) < 0.05
@pytest.mark.parametrize(
"motion_gen",
[
(True),
(False),
],
indirect=True,
)
def test_hold_orientation(motion_gen):
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = state.ee_pose.clone()
goal_pose.position[0, 0] -= 0.1
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone()
goal_pose.quaternion = start_pose.quaternion.clone()
m_config = MotionGenPlanConfig(
max_attempts=1,
pose_cost_metric=PoseCostMetric(
hold_partial_pose=True,
hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 0, 0, 0]),
),
)
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
assert torch.count_nonzero(result.success) == 1
traj_pose = motion_gen.compute_kinematics(result.optimized_plan).ee_pose.clone()
# assert goal_pose.linear_distance(traj_pose) > 0.0
goal_pose = goal_pose.repeat(traj_pose.shape[0])
assert torch.max(goal_pose.angular_distance(traj_pose)) < 0.05
@pytest.mark.parametrize(
"motion_gen",
[
(True),
(False),
],
indirect=True,
)
def test_hold_position(motion_gen):
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = state.ee_pose.clone()
goal_pose.position[0, 0] -= 0.1
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone()
goal_pose.position = start_pose.position.clone()
m_config = MotionGenPlanConfig(
max_attempts=1,
pose_cost_metric=PoseCostMetric(
hold_partial_pose=True,
hold_vec_weight=motion_gen.tensor_args.to_device([0, 0, 0, 1, 1, 1]),
),
)
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
assert torch.count_nonzero(result.success) == 1
traj_pose = motion_gen.compute_kinematics(result.optimized_plan).ee_pose.clone()
goal_pose = goal_pose.repeat(traj_pose.shape[0])
assert torch.max(goal_pose.linear_distance(traj_pose)) < 0.005
@pytest.mark.parametrize(
"motion_gen",
[
(False),
(True),
],
indirect=True,
)
def test_hold_partial_pose(motion_gen):
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = state.ee_pose.clone()
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone()
goal_pose.position = start_pose.position.clone()
goal_pose.quaternion = start_pose.quaternion.clone()
if motion_gen.project_pose_to_goal_frame:
offset_pose = Pose.from_list([0, 0.1, 0, 1, 0, 0, 0])
goal_pose = goal_pose.multiply(offset_pose)
else:
goal_pose.position[0, 1] += 0.2
m_config = MotionGenPlanConfig(
max_attempts=1,
pose_cost_metric=PoseCostMetric(
hold_partial_pose=True,
hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 1, 0, 1]),
),
)
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
assert torch.count_nonzero(result.success) == 1
traj_pose = motion_gen.compute_kinematics(result.optimized_plan).ee_pose.clone()
goal_pose = goal_pose.repeat(traj_pose.shape[0])
if motion_gen.project_pose_to_goal_frame:
traj_pose = goal_pose.compute_local_pose(traj_pose)
traj_pose.position[:, 1] = 0.0
assert torch.max(traj_pose.position) < 0.005
else:
goal_pose.position[:, 1] = 0.0
traj_pose.position[:, 1] = 0.0
assert torch.max(goal_pose.linear_distance(traj_pose)) < 0.005
@pytest.mark.parametrize(
"motion_gen",
[
(False),
(True),
],
indirect=True,
)
def test_hold_partial_pose_fail(motion_gen):
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = state.ee_pose.clone()
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone()
goal_pose.position = start_pose.position.clone()
goal_pose.quaternion = start_pose.quaternion.clone()
if motion_gen.project_pose_to_goal_frame:
offset_pose = Pose.from_list([0, 0.1, 0.1, 1, 0, 0, 0])
goal_pose = goal_pose.multiply(offset_pose)
else:
goal_pose.position[0, 1] += 0.2
goal_pose.position[0, 0] += 0.2
m_config = MotionGenPlanConfig(
max_attempts=1,
pose_cost_metric=PoseCostMetric(
hold_partial_pose=True,
hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 1, 0, 1]),
),
)
result = motion_gen.plan_single(start_state, goal_pose, m_config.clone())
assert torch.count_nonzero(result.success) == 0
assert result.valid_query == False