373 lines
12 KiB
Python
373 lines
12 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
try:
|
|
# Third Party
|
|
import isaacsim
|
|
except ImportError:
|
|
pass
|
|
|
|
# Third Party
|
|
import torch
|
|
|
|
a = torch.zeros(4, device="cuda:0")
|
|
|
|
# Standard Library
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--headless_mode",
|
|
type=str,
|
|
default=None,
|
|
help="To run headless, use one of [native, websocket], webrtc might not work.",
|
|
)
|
|
parser.add_argument(
|
|
"--visualize_spheres",
|
|
action="store_true",
|
|
help="When True, visualizes robot spheres",
|
|
default=False,
|
|
)
|
|
|
|
parser.add_argument("--robot", type=str, default="franka.yml", help="robot configuration to load")
|
|
args = parser.parse_args()
|
|
|
|
############################################################
|
|
|
|
# Third Party
|
|
from omni.isaac.kit import SimulationApp
|
|
|
|
simulation_app = SimulationApp(
|
|
{
|
|
"headless": args.headless_mode is not None,
|
|
"width": "1920",
|
|
"height": "1080",
|
|
}
|
|
)
|
|
# Standard Library
|
|
from typing import Dict
|
|
|
|
# Third Party
|
|
import carb
|
|
import numpy as np
|
|
from helper import add_extensions, add_robot_to_scene
|
|
from omni.isaac.core import World
|
|
from omni.isaac.core.objects import cuboid, sphere
|
|
|
|
# CuRobo
|
|
from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel
|
|
|
|
# from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig
|
|
from curobo.geom.sdf.world import CollisionCheckerType
|
|
from curobo.geom.types import WorldConfig
|
|
from curobo.rollout.rollout_base import Goal
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.math import Pose
|
|
from curobo.types.robot import JointState, RobotConfig
|
|
from curobo.types.state import JointState
|
|
from curobo.util.logger import setup_curobo_logger
|
|
from curobo.util.usd_helper import UsdHelper
|
|
from curobo.util_file import (
|
|
get_assets_path,
|
|
get_filename,
|
|
get_path_of_dir,
|
|
get_robot_configs_path,
|
|
get_world_configs_path,
|
|
join_path,
|
|
load_yaml,
|
|
)
|
|
from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig
|
|
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
|
from curobo.wrap.reacher.mpc import MpcSolver, MpcSolverConfig
|
|
|
|
########### OV #################
|
|
|
|
|
|
############################################################
|
|
|
|
|
|
########### OV #################;;;;;
|
|
|
|
|
|
def get_pose_grid(n_x, n_y, n_z, max_x, max_y, max_z):
|
|
x = np.linspace(-max_x, max_x, n_x)
|
|
y = np.linspace(-max_y, max_y, n_y)
|
|
z = np.linspace(0, max_z, n_z)
|
|
x, y, z = np.meshgrid(x, y, z, indexing="ij")
|
|
|
|
position_arr = np.zeros((n_x * n_y * n_z, 3))
|
|
position_arr[:, 0] = x.flatten()
|
|
position_arr[:, 1] = y.flatten()
|
|
position_arr[:, 2] = z.flatten()
|
|
return position_arr
|
|
|
|
|
|
def draw_points(pose, success):
|
|
# Third Party
|
|
from omni.isaac.debug_draw import _debug_draw
|
|
|
|
draw = _debug_draw.acquire_debug_draw_interface()
|
|
N = 100
|
|
# if draw.get_num_points() > 0:
|
|
draw.clear_points()
|
|
cpu_pos = pose.position.cpu().numpy()
|
|
b, _ = cpu_pos.shape
|
|
point_list = []
|
|
colors = []
|
|
for i in range(b):
|
|
# get list of points:
|
|
point_list += [(cpu_pos[i, 0], cpu_pos[i, 1], cpu_pos[i, 2])]
|
|
if success[i].item():
|
|
colors += [(0, 1, 0, 0.25)]
|
|
else:
|
|
colors += [(1, 0, 0, 0.25)]
|
|
sizes = [40.0 for _ in range(b)]
|
|
|
|
draw.draw_points(point_list, colors, sizes)
|
|
|
|
|
|
def main():
|
|
# assuming obstacles are in objects_path:
|
|
my_world = World(stage_units_in_meters=1.0)
|
|
stage = my_world.stage
|
|
|
|
xform = stage.DefinePrim("/World", "Xform")
|
|
stage.SetDefaultPrim(xform)
|
|
stage.DefinePrim("/curobo", "Xform")
|
|
# my_world.stage.SetDefaultPrim(my_world.stage.GetPrimAtPath("/World"))
|
|
stage = my_world.stage
|
|
# stage.SetDefaultPrim(stage.GetPrimAtPath("/World"))
|
|
|
|
# Make a target to follow
|
|
target = cuboid.VisualCuboid(
|
|
"/World/target",
|
|
position=np.array([0.5, 0, 0.5]),
|
|
orientation=np.array([0, 1, 0, 0]),
|
|
color=np.array([1.0, 0, 0]),
|
|
size=0.05,
|
|
)
|
|
|
|
setup_curobo_logger("warn")
|
|
past_pose = None
|
|
n_obstacle_cuboids = 30
|
|
n_obstacle_mesh = 10
|
|
|
|
# warmup curobo instance
|
|
usd_help = UsdHelper()
|
|
target_pose = None
|
|
|
|
tensor_args = TensorDeviceType()
|
|
|
|
robot_cfg = load_yaml(join_path(get_robot_configs_path(), args.robot))["robot_cfg"]
|
|
|
|
j_names = robot_cfg["kinematics"]["cspace"]["joint_names"]
|
|
default_config = robot_cfg["kinematics"]["cspace"]["retract_config"]
|
|
|
|
robot, robot_prim_path = add_robot_to_scene(robot_cfg, my_world)
|
|
|
|
articulation_controller = robot.get_articulation_controller()
|
|
|
|
world_cfg_table = WorldConfig.from_dict(
|
|
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
|
|
)
|
|
world_cfg_table.cuboid[0].pose[2] -= 0.002
|
|
world_cfg1 = WorldConfig.from_dict(
|
|
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
|
|
).get_mesh_world()
|
|
world_cfg1.mesh[0].name += "_mesh"
|
|
world_cfg1.mesh[0].pose[2] = -10.5
|
|
|
|
world_cfg = WorldConfig(cuboid=world_cfg_table.cuboid, mesh=world_cfg1.mesh)
|
|
|
|
ik_config = IKSolverConfig.load_from_robot_config(
|
|
robot_cfg,
|
|
world_cfg,
|
|
rotation_threshold=0.05,
|
|
position_threshold=0.005,
|
|
num_seeds=20,
|
|
self_collision_check=True,
|
|
self_collision_opt=True,
|
|
tensor_args=tensor_args,
|
|
use_cuda_graph=True,
|
|
collision_checker_type=CollisionCheckerType.MESH,
|
|
collision_cache={"obb": n_obstacle_cuboids, "mesh": n_obstacle_mesh},
|
|
# use_fixed_samples=True,
|
|
)
|
|
ik_solver = IKSolver(ik_config)
|
|
|
|
# get pose grid:
|
|
position_grid_offset = tensor_args.to_device(get_pose_grid(10, 10, 5, 0.5, 0.5, 0.5))
|
|
|
|
# read current ik pose and warmup?
|
|
fk_state = ik_solver.fk(ik_solver.get_retract_config().view(1, -1))
|
|
goal_pose = fk_state.ee_pose
|
|
goal_pose = goal_pose.repeat(position_grid_offset.shape[0])
|
|
goal_pose.position += position_grid_offset
|
|
|
|
result = ik_solver.solve_batch(goal_pose)
|
|
|
|
print("Curobo is Ready")
|
|
add_extensions(simulation_app, args.headless_mode)
|
|
|
|
usd_help.load_stage(my_world.stage)
|
|
usd_help.add_world_to_stage(world_cfg, base_frame="/World")
|
|
|
|
cmd_plan = None
|
|
cmd_idx = 0
|
|
my_world.scene.add_default_ground_plane()
|
|
i = 0
|
|
spheres = None
|
|
while simulation_app.is_running():
|
|
my_world.step(render=True)
|
|
if not my_world.is_playing():
|
|
if i % 100 == 0:
|
|
print("**** Click Play to start simulation *****")
|
|
i += 1
|
|
# if step_index == 0:
|
|
# my_world.play()
|
|
continue
|
|
|
|
step_index = my_world.current_time_step_index
|
|
# print(step_index)
|
|
if step_index <= 2:
|
|
my_world.reset()
|
|
idx_list = [robot.get_dof_index(x) for x in j_names]
|
|
robot.set_joint_positions(default_config, idx_list)
|
|
|
|
robot._articulation_view.set_max_efforts(
|
|
values=np.array([5000 for i in range(len(idx_list))]), joint_indices=idx_list
|
|
)
|
|
if step_index < 20:
|
|
continue
|
|
|
|
if step_index == 50 or step_index % 500 == 0.0: # and cmd_plan is None:
|
|
print("Updating world, reading w.r.t.", robot_prim_path)
|
|
obstacles = usd_help.get_obstacles_from_stage(
|
|
# only_paths=[obstacles_path],
|
|
reference_prim_path=robot_prim_path,
|
|
ignore_substring=[
|
|
robot_prim_path,
|
|
"/World/target",
|
|
"/World/defaultGroundPlane",
|
|
"/curobo",
|
|
],
|
|
).get_collision_check_world()
|
|
print([x.name for x in obstacles.objects])
|
|
ik_solver.update_world(obstacles)
|
|
print("Updated World")
|
|
carb.log_info("Synced CuRobo world from stage.")
|
|
|
|
# position and orientation of target virtual cube:
|
|
cube_position, cube_orientation = target.get_world_pose()
|
|
|
|
if past_pose is None:
|
|
past_pose = cube_position
|
|
if target_pose is None:
|
|
target_pose = cube_position
|
|
sim_js = robot.get_joints_state()
|
|
sim_js_names = robot.dof_names
|
|
cu_js = JointState(
|
|
position=tensor_args.to_device(sim_js.positions),
|
|
velocity=tensor_args.to_device(sim_js.velocities) * 0.0,
|
|
acceleration=tensor_args.to_device(sim_js.velocities) * 0.0,
|
|
jerk=tensor_args.to_device(sim_js.velocities) * 0.0,
|
|
joint_names=sim_js_names,
|
|
)
|
|
cu_js = cu_js.get_ordered_joint_state(ik_solver.kinematics.joint_names)
|
|
|
|
if args.visualize_spheres and step_index % 2 == 0:
|
|
sph_list = ik_solver.kinematics.get_robot_as_spheres(cu_js.position)
|
|
|
|
if spheres is None:
|
|
spheres = []
|
|
# create spheres:
|
|
|
|
for si, s in enumerate(sph_list[0]):
|
|
sp = sphere.VisualSphere(
|
|
prim_path="/curobo/robot_sphere_" + str(si),
|
|
position=np.ravel(s.position),
|
|
radius=float(s.radius),
|
|
color=np.array([0, 0.8, 0.2]),
|
|
)
|
|
spheres.append(sp)
|
|
else:
|
|
for si, s in enumerate(sph_list[0]):
|
|
spheres[si].set_world_pose(position=np.ravel(s.position))
|
|
spheres[si].set_radius(float(s.radius))
|
|
# print(sim_js.velocities)
|
|
if (
|
|
np.linalg.norm(cube_position - target_pose) > 1e-3
|
|
and np.linalg.norm(past_pose - cube_position) == 0.0
|
|
and np.linalg.norm(sim_js.velocities) < 0.2
|
|
):
|
|
# Set EE teleop goals, use cube for simple non-vr init:
|
|
ee_translation_goal = cube_position
|
|
ee_orientation_teleop_goal = cube_orientation
|
|
|
|
# compute curobo solution:
|
|
ik_goal = Pose(
|
|
position=tensor_args.to_device(ee_translation_goal),
|
|
quaternion=tensor_args.to_device(ee_orientation_teleop_goal),
|
|
)
|
|
goal_pose.position[:] = ik_goal.position[:] + position_grid_offset
|
|
goal_pose.quaternion[:] = ik_goal.quaternion[:]
|
|
result = ik_solver.solve_batch(goal_pose)
|
|
|
|
succ = torch.any(result.success)
|
|
print(
|
|
"IK completed: Poses: "
|
|
+ str(goal_pose.batch)
|
|
+ " Time(s): "
|
|
+ str(result.solve_time)
|
|
)
|
|
# get spheres and flags:
|
|
draw_points(goal_pose, result.success)
|
|
|
|
if succ:
|
|
# get all solutions:
|
|
|
|
cmd_plan = result.js_solution[result.success]
|
|
# get only joint names that are in both:
|
|
idx_list = []
|
|
common_js_names = []
|
|
for x in sim_js_names:
|
|
if x in cmd_plan.joint_names:
|
|
idx_list.append(robot.get_dof_index(x))
|
|
common_js_names.append(x)
|
|
# idx_list = [robot.get_dof_index(x) for x in sim_js_names]
|
|
|
|
cmd_plan = cmd_plan.get_ordered_joint_state(common_js_names)
|
|
|
|
cmd_idx = 0
|
|
|
|
else:
|
|
carb.log_warn("Plan did not converge to a solution. No action is being taken.")
|
|
target_pose = cube_position
|
|
past_pose = cube_position
|
|
if cmd_plan is not None and step_index % 20 == 0 and True:
|
|
cmd_state = cmd_plan[cmd_idx]
|
|
|
|
robot.set_joint_positions(cmd_state.position.cpu().numpy(), idx_list)
|
|
|
|
# set desired joint angles obtained from IK:
|
|
# articulation_controller.apply_action(art_action)
|
|
cmd_idx += 1
|
|
if cmd_idx >= len(cmd_plan.position):
|
|
cmd_idx = 0
|
|
cmd_plan = None
|
|
my_world.step(render=True)
|
|
robot.set_joint_positions(default_config, idx_list)
|
|
simulation_app.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|