67 lines
2.2 KiB
Python
67 lines
2.2 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
# Third Party
|
|
import torch
|
|
|
|
# CuRobo
|
|
from curobo.geom.transform import batch_transform_points, transform_points
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.math import Pose
|
|
|
|
|
|
def test_pose_transform_point():
|
|
tensor_args = TensorDeviceType()
|
|
new_pose = Pose.from_list([0, 0, 0, 1, 0, 0, 0], tensor_args)
|
|
|
|
new_pose.position.requires_grad = True
|
|
new_pose.quaternion.requires_grad = True
|
|
|
|
points = torch.zeros((3, 3), device=tensor_args.device, dtype=tensor_args.dtype)
|
|
points[:, 0] = 0.1
|
|
points[2, 0] = -0.5
|
|
|
|
out_pt = new_pose.transform_point(points)
|
|
|
|
loss = torch.sum(out_pt)
|
|
loss.backward()
|
|
assert torch.norm(new_pose.position.grad) > 0.0
|
|
assert torch.norm(new_pose.quaternion.grad) > 0.0
|
|
|
|
|
|
def test_pose_transform_point_grad():
|
|
tensor_args = TensorDeviceType()
|
|
new_pose = Pose.from_list([10.0, 0, 0.1, 1.0, 0, 0, 0], tensor_args)
|
|
new_pose.position.requires_grad = True
|
|
new_pose.quaternion.requires_grad = True
|
|
|
|
points = torch.zeros((1, 1, 3), device=tensor_args.device, dtype=tensor_args.dtype) + 10.0
|
|
|
|
# buffers:
|
|
out_points = torch.zeros(
|
|
(points.shape[0], points.shape[1], 3), device=points.device, dtype=points.dtype
|
|
)
|
|
out_gp = torch.zeros((new_pose.position.shape[0], 3), device=tensor_args.device)
|
|
out_gq = torch.zeros((new_pose.position.shape[0], 4), device=tensor_args.device)
|
|
out_gpt = torch.zeros((points.shape[0], points.shape[1], 3), device=tensor_args.device)
|
|
|
|
torch.autograd.gradcheck(
|
|
batch_transform_points,
|
|
(new_pose.position, new_pose.quaternion, points, out_points, out_gp, out_gq, out_gpt),
|
|
eps=1e-6,
|
|
atol=1.0,
|
|
# nondet_tol=100.0,
|
|
)
|
|
|
|
|
|
# test_pose_transform_point()
|
|
# test_pose_transform_point_grad()
|