Files
gen_data_curobo/src/curobo/geom/cv.py
2024-04-25 12:24:17 -07:00

123 lines
3.8 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import torch
# CuRobo
from curobo.util.torch_utils import get_torch_jit_decorator
@get_torch_jit_decorator()
def project_depth_to_pointcloud(depth_image: torch.Tensor, intrinsics_matrix: torch.Tensor):
"""Projects numpy depth image to point cloud.
Args:
np_depth_image: numpy array float, shape (h, w).
intrinsics array: numpy array float, 3x3 intrinsics matrix.
Returns:
array of float (h, w, 3)
"""
fx = intrinsics_matrix[0, 0]
fy = intrinsics_matrix[1, 1]
cx = intrinsics_matrix[0, 2]
cy = intrinsics_matrix[1, 2]
height = depth_image.shape[0]
width = depth_image.shape[1]
input_x = torch.arange(width, dtype=torch.float32, device=depth_image.device)
input_y = torch.arange(height, dtype=torch.float32, device=depth_image.device)
input_x, input_y = torch.meshgrid(input_x, input_y, indexing="ij")
input_x, input_y = input_x.T, input_y.T
input_z = depth_image
output_x = (input_x * input_z - cx * input_z) / fx
output_y = (input_y * input_z - cy * input_z) / fy
raw_pc = torch.stack([output_x, output_y, input_z], -1)
return raw_pc
@get_torch_jit_decorator()
def get_projection_rays(
height: int, width: int, intrinsics_matrix: torch.Tensor, depth_to_meter: float = 0.001
):
"""Projects numpy depth image to point cloud.
Args:
np_depth_image: numpy array float, shape (h, w).
intrinsics array: numpy array float, 3x3 intrinsics matrix.
Returns:
array of float (h, w, 3)
"""
fx = intrinsics_matrix[:, 0:1, 0:1]
fy = intrinsics_matrix[:, 1:2, 1:2]
cx = intrinsics_matrix[:, 0:1, 2:3]
cy = intrinsics_matrix[:, 1:2, 2:3]
input_x = torch.arange(width, dtype=torch.float32, device=intrinsics_matrix.device)
input_y = torch.arange(height, dtype=torch.float32, device=intrinsics_matrix.device)
input_x, input_y = torch.meshgrid(input_x, input_y, indexing="ij")
input_x, input_y = input_x.T, input_y.T
input_x = input_x.unsqueeze(0).repeat(intrinsics_matrix.shape[0], 1, 1)
input_y = input_y.unsqueeze(0).repeat(intrinsics_matrix.shape[0], 1, 1)
input_z = torch.ones(
(intrinsics_matrix.shape[0], height, width),
device=intrinsics_matrix.device,
dtype=torch.float32,
)
output_x = (input_x - cx) / fx
output_y = (input_y - cy) / fy
rays = torch.stack([output_x, output_y, input_z], -1).reshape(
intrinsics_matrix.shape[0], width * height, 3
)
rays = rays * depth_to_meter
return rays
@get_torch_jit_decorator()
def project_pointcloud_to_depth(
pointcloud: torch.Tensor,
output_image: torch.Tensor,
):
"""Projects pointcloud to depth image
Args:
np_depth_image: numpy array float, shape (h, w).
intrinsics array: numpy array float, 3x3 intrinsics matrix.
Returns:
array of float (h, w)
"""
width, height = output_image.shape
output_image = output_image.view(-1)
output_image[:] = pointcloud[:, 2]
output_image = output_image.view(width, height)
return output_image
@get_torch_jit_decorator()
def project_depth_using_rays(
depth_image: torch.Tensor, rays: torch.Tensor, filter_origin: bool = False
):
if filter_origin:
depth_image = torch.where(depth_image < 0.01, 0, depth_image)
depth_image = depth_image.view(depth_image.shape[0], -1, 1).contiguous()
points = depth_image * rays
return points