501 lines
16 KiB
Python
501 lines
16 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
try:
|
|
# Third Party
|
|
import isaacsim
|
|
except ImportError:
|
|
pass
|
|
|
|
# Third Party
|
|
import torch
|
|
|
|
a = torch.zeros(4, device="cuda:0")
|
|
|
|
# Third Party
|
|
from omni.isaac.kit import SimulationApp
|
|
|
|
simulation_app = SimulationApp(
|
|
{
|
|
"headless": False,
|
|
"width": "1920",
|
|
"height": "1080",
|
|
}
|
|
)
|
|
# Third Party
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from matplotlib import cm
|
|
from nvblox_torch.datasets.realsense_dataset import RealsenseDataloader
|
|
|
|
# CuRobo
|
|
from curobo.geom.sdf.world import CollisionCheckerType
|
|
from curobo.geom.types import Cuboid, WorldConfig
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.camera import CameraObservation
|
|
from curobo.types.math import Pose
|
|
from curobo.types.robot import JointState, RobotConfig
|
|
from curobo.types.state import JointState
|
|
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
|
|
from curobo.wrap.model.robot_world import RobotWorld, RobotWorldConfig
|
|
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
|
|
|
simulation_app.update()
|
|
# Standard Library
|
|
import argparse
|
|
|
|
# Third Party
|
|
import carb
|
|
from helper import VoxelManager, add_robot_to_scene
|
|
from omni.isaac.core import World
|
|
from omni.isaac.core.materials import OmniPBR
|
|
from omni.isaac.core.objects import cuboid, sphere
|
|
from omni.isaac.core.utils.types import ArticulationAction
|
|
|
|
# CuRobo
|
|
from curobo.rollout.rollout_base import Goal
|
|
from curobo.util.usd_helper import UsdHelper
|
|
from curobo.wrap.reacher.mpc import MpcSolver, MpcSolverConfig
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
|
parser.add_argument("--robot", type=str, default="franka.yml", help="robot configuration to load")
|
|
|
|
parser.add_argument(
|
|
"--waypoints", action="store_true", help="When True, sets robot in static mode", default=False
|
|
)
|
|
parser.add_argument(
|
|
"--show-window",
|
|
action="store_true",
|
|
help="When True, shows camera image in a CV window",
|
|
default=False,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-debug-draw",
|
|
action="store_true",
|
|
help="When True, sets robot in static mode",
|
|
default=False,
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
|
|
def draw_rollout_points(rollouts: torch.Tensor, clear: bool = False):
|
|
if rollouts is None:
|
|
return
|
|
# Standard Library
|
|
import random
|
|
|
|
# Third Party
|
|
from omni.isaac.debug_draw import _debug_draw
|
|
|
|
draw = _debug_draw.acquire_debug_draw_interface()
|
|
N = 100
|
|
if clear:
|
|
draw.clear_points()
|
|
# if draw.get_num_points() > 0:
|
|
# draw.clear_points()
|
|
cpu_rollouts = rollouts.cpu().numpy()
|
|
b, h, _ = cpu_rollouts.shape
|
|
point_list = []
|
|
colors = []
|
|
for i in range(b):
|
|
# get list of points:
|
|
point_list += [
|
|
(cpu_rollouts[i, j, 0], cpu_rollouts[i, j, 1], cpu_rollouts[i, j, 2]) for j in range(h)
|
|
]
|
|
colors += [(1.0 - (i + 1.0 / b), 0.3 * (i + 1.0 / b), 0.0, 0.1) for _ in range(h)]
|
|
sizes = [10.0 for _ in range(b * h)]
|
|
draw.draw_points(point_list, colors, sizes)
|
|
|
|
|
|
def draw_points(voxels):
|
|
# Third Party
|
|
|
|
# Third Party
|
|
from omni.isaac.debug_draw import _debug_draw
|
|
|
|
draw = _debug_draw.acquire_debug_draw_interface()
|
|
# if draw.get_num_points() > 0:
|
|
draw.clear_points()
|
|
if len(voxels) == 0:
|
|
return
|
|
|
|
jet = cm.get_cmap("plasma").reversed()
|
|
|
|
cpu_pos = voxels[..., :3].view(-1, 3).cpu().numpy()
|
|
z_val = cpu_pos[:, 0]
|
|
|
|
jet_colors = jet(z_val)
|
|
|
|
b, _ = cpu_pos.shape
|
|
point_list = []
|
|
colors = []
|
|
for i in range(b):
|
|
# get list of points:
|
|
point_list += [(cpu_pos[i, 0], cpu_pos[i, 1], cpu_pos[i, 2])]
|
|
colors += [(jet_colors[i][0], jet_colors[i][1], jet_colors[i][2], 0.8)]
|
|
sizes = [20.0 for _ in range(b)]
|
|
|
|
draw.draw_points(point_list, colors, sizes)
|
|
|
|
|
|
def clip_camera(camera_data):
|
|
# clip camera image to bounding box:
|
|
h_ratio = 0.05
|
|
w_ratio = 0.05
|
|
depth = camera_data["raw_depth"]
|
|
depth_tensor = camera_data["depth"]
|
|
h, w = depth_tensor.shape
|
|
depth[: int(h_ratio * h), :] = 0.0
|
|
depth[int((1 - h_ratio) * h) :, :] = 0.0
|
|
depth[:, : int(w_ratio * w)] = 0.0
|
|
depth[:, int((1 - w_ratio) * w) :] = 0.0
|
|
|
|
depth_tensor[: int(h_ratio * h), :] = 0.0
|
|
depth_tensor[int(1 - h_ratio * h) :, :] = 0.0
|
|
depth_tensor[:, : int(w_ratio * w)] = 0.0
|
|
depth_tensor[:, int(1 - w_ratio * w) :] = 0.0
|
|
|
|
|
|
def draw_line(start, gradient):
|
|
# Third Party
|
|
from omni.isaac.debug_draw import _debug_draw
|
|
|
|
draw = _debug_draw.acquire_debug_draw_interface()
|
|
# if draw.get_num_points() > 0:
|
|
draw.clear_lines()
|
|
start_list = [start]
|
|
end_list = [start + gradient]
|
|
|
|
colors = [(0.0, 0, 0.8, 0.9)]
|
|
|
|
sizes = [10.0]
|
|
draw.draw_lines(start_list, end_list, colors, sizes)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
radius = 0.05
|
|
act_distance = 0.4
|
|
voxel_size = 0.05
|
|
render_voxel_size = 0.02
|
|
clipping_distance = 0.7
|
|
|
|
my_world = World(stage_units_in_meters=1.0)
|
|
stage = my_world.stage
|
|
|
|
stage = my_world.stage
|
|
my_world.scene.add_default_ground_plane()
|
|
|
|
xform = stage.DefinePrim("/World", "Xform")
|
|
stage.SetDefaultPrim(xform)
|
|
target_material = OmniPBR("/World/looks/t", color=np.array([0, 1, 0]))
|
|
target_material_2 = OmniPBR("/World/looks/t2", color=np.array([0, 1, 0]))
|
|
if not args.waypoints:
|
|
target = cuboid.VisualCuboid(
|
|
"/World/target_1",
|
|
position=np.array([0.5, 0.0, 0.4]),
|
|
orientation=np.array([0, 1.0, 0, 0]),
|
|
size=0.04,
|
|
visual_material=target_material,
|
|
)
|
|
|
|
else:
|
|
target = cuboid.VisualCuboid(
|
|
"/World/target_1",
|
|
position=np.array([0.4, -0.5, 0.2]),
|
|
orientation=np.array([0, 1.0, 0, 0]),
|
|
size=0.04,
|
|
visual_material=target_material,
|
|
)
|
|
|
|
# Make a target to follow
|
|
target_2 = cuboid.VisualCuboid(
|
|
"/World/target_2",
|
|
position=np.array([0.4, 0.5, 0.2]),
|
|
orientation=np.array([0.0, 1, 0.0, 0.0]),
|
|
size=0.04,
|
|
visual_material=target_material_2,
|
|
)
|
|
|
|
# Make a target to follow
|
|
camera_marker = cuboid.VisualCuboid(
|
|
"/World/camera_nvblox",
|
|
position=np.array([-0.05, 0.0, 0.45]),
|
|
# orientation=np.array([0.793, 0, 0.609,0.0]),
|
|
orientation=np.array([0.5, -0.5, 0.5, -0.5]),
|
|
# orientation=np.array([0.561, -0.561, 0.431,-0.431]),
|
|
color=np.array([0, 0, 1]),
|
|
size=0.01,
|
|
)
|
|
camera_marker.set_visibility(False)
|
|
collision_checker_type = CollisionCheckerType.BLOX
|
|
world_cfg = WorldConfig.from_dict(
|
|
{
|
|
"blox": {
|
|
"world": {
|
|
"pose": [0, 0, 0, 1, 0, 0, 0],
|
|
"integrator_type": "occupancy",
|
|
"voxel_size": 0.03,
|
|
}
|
|
}
|
|
}
|
|
)
|
|
tensor_args = TensorDeviceType()
|
|
|
|
robot_cfg = load_yaml(join_path(get_robot_configs_path(), args.robot))["robot_cfg"]
|
|
|
|
j_names = robot_cfg["kinematics"]["cspace"]["joint_names"]
|
|
default_config = robot_cfg["kinematics"]["cspace"]["retract_config"]
|
|
robot_cfg["kinematics"]["collision_sphere_buffer"] = 0.02
|
|
robot, _ = add_robot_to_scene(robot_cfg, my_world, "/World/world_robot/")
|
|
|
|
world_cfg_table = WorldConfig.from_dict(
|
|
load_yaml(join_path(get_world_configs_path(), "collision_wall.yml"))
|
|
)
|
|
|
|
world_cfg_table.cuboid[0].pose[2] -= 0.01
|
|
usd_help = UsdHelper()
|
|
|
|
usd_help.load_stage(my_world.stage)
|
|
usd_help.add_world_to_stage(world_cfg_table.get_mesh_world(), base_frame="/World")
|
|
world_cfg.add_obstacle(world_cfg_table.cuboid[0])
|
|
world_cfg.add_obstacle(world_cfg_table.cuboid[1])
|
|
|
|
mpc_config = MpcSolverConfig.load_from_robot_config(
|
|
robot_cfg,
|
|
world_cfg,
|
|
use_cuda_graph=True,
|
|
use_cuda_graph_metrics=True,
|
|
use_cuda_graph_full_step=False,
|
|
self_collision_check=True,
|
|
collision_checker_type=CollisionCheckerType.BLOX,
|
|
use_mppi=True,
|
|
use_lbfgs=False,
|
|
use_es=False,
|
|
store_rollouts=True,
|
|
step_dt=0.02,
|
|
)
|
|
|
|
mpc = MpcSolver(mpc_config)
|
|
|
|
retract_cfg = mpc.rollout_fn.dynamics_model.retract_config.clone().unsqueeze(0)
|
|
joint_names = mpc.rollout_fn.joint_names
|
|
|
|
state = mpc.rollout_fn.compute_kinematics(
|
|
JointState.from_position(retract_cfg, joint_names=joint_names)
|
|
)
|
|
current_state = JointState.from_position(retract_cfg, joint_names=joint_names)
|
|
retract_pose = Pose(state.ee_pos_seq, quaternion=state.ee_quat_seq)
|
|
goal = Goal(
|
|
current_state=current_state,
|
|
goal_state=JointState.from_position(retract_cfg, joint_names=joint_names),
|
|
goal_pose=retract_pose,
|
|
)
|
|
|
|
goal_buffer = mpc.setup_solve_single(goal, 1)
|
|
mpc.update_goal(goal_buffer)
|
|
|
|
world_model = mpc.world_collision
|
|
realsense_data = RealsenseDataloader(clipping_distance_m=clipping_distance)
|
|
data = realsense_data.get_data()
|
|
|
|
camera_pose = Pose.from_list([0, 0, 0, 0.707, 0.707, 0, 0])
|
|
i = 0
|
|
tensor_args = TensorDeviceType()
|
|
target_list = [target, target_2]
|
|
target_material_list = [target_material, target_material_2]
|
|
for material in target_material_list:
|
|
material.set_color(np.array([0.1, 0.1, 0.1]))
|
|
target_idx = 0
|
|
cmd_idx = 0
|
|
cmd_plan = None
|
|
articulation_controller = robot.get_articulation_controller()
|
|
cmd_state_full = None
|
|
|
|
cmd_step_idx = 0
|
|
current_error = 0.0
|
|
error_thresh = 0.01
|
|
first_target = False
|
|
if not args.use_debug_draw:
|
|
voxel_viewer = VoxelManager(100, size=render_voxel_size)
|
|
|
|
while simulation_app.is_running():
|
|
my_world.step(render=True)
|
|
|
|
if not my_world.is_playing():
|
|
if i % 100 == 0:
|
|
print("**** Click Play to start simulation *****")
|
|
i += 1
|
|
# if step_index == 0:
|
|
# my_world.play()
|
|
continue
|
|
step_index = my_world.current_time_step_index
|
|
if cmd_step_idx == 0:
|
|
draw_rollout_points(mpc.get_visual_rollouts(), clear=not args.use_debug_draw)
|
|
|
|
if step_index <= 2:
|
|
my_world.reset()
|
|
idx_list = [robot.get_dof_index(x) for x in j_names]
|
|
robot.set_joint_positions(default_config, idx_list)
|
|
|
|
robot._articulation_view.set_max_efforts(
|
|
values=np.array([5000 for i in range(len(idx_list))]), joint_indices=idx_list
|
|
)
|
|
|
|
if step_index % 2 == 0.0:
|
|
# camera data updation
|
|
world_model.decay_layer("world")
|
|
data = realsense_data.get_data()
|
|
clip_camera(data)
|
|
cube_position, cube_orientation = camera_marker.get_local_pose()
|
|
camera_pose = Pose(
|
|
position=tensor_args.to_device(cube_position),
|
|
quaternion=tensor_args.to_device(cube_orientation),
|
|
)
|
|
|
|
data_camera = CameraObservation( # rgb_image = data["rgba_nvblox"],
|
|
depth_image=data["depth"], intrinsics=data["intrinsics"], pose=camera_pose
|
|
)
|
|
data_camera = data_camera.to(device=tensor_args.device)
|
|
world_model.add_camera_frame(data_camera, "world")
|
|
world_model.process_camera_frames("world", False)
|
|
torch.cuda.synchronize()
|
|
world_model.update_blox_hashes()
|
|
|
|
bounding = Cuboid("t", dims=[1, 1, 1.0], pose=[0, 0, 0, 1, 0, 0, 0])
|
|
voxels = world_model.get_voxels_in_bounding_box(bounding, voxel_size)
|
|
if voxels.shape[0] > 0:
|
|
voxels = voxels[voxels[:, 2] > voxel_size]
|
|
voxels = voxels[voxels[:, 0] > 0.0]
|
|
if args.use_debug_draw:
|
|
draw_points(voxels)
|
|
|
|
else:
|
|
voxels = voxels.cpu().numpy()
|
|
voxel_viewer.update_voxels(voxels[:, :3])
|
|
else:
|
|
if not args.use_debug_draw:
|
|
voxel_viewer.clear()
|
|
|
|
if args.show_window:
|
|
depth_image = data["raw_depth"]
|
|
color_image = data["raw_rgb"]
|
|
depth_colormap = cv2.applyColorMap(
|
|
cv2.convertScaleAbs(depth_image, alpha=100), cv2.COLORMAP_VIRIDIS
|
|
)
|
|
color_image = cv2.flip(color_image, 1)
|
|
depth_colormap = cv2.flip(depth_colormap, 1)
|
|
|
|
images = np.hstack((color_image, depth_colormap))
|
|
cv2.namedWindow("NVBLOX Example", cv2.WINDOW_NORMAL)
|
|
cv2.imshow("NVBLOX Example", images)
|
|
key = cv2.waitKey(1)
|
|
# Press esc or 'q' to close the image window
|
|
if key & 0xFF == ord("q") or key == 27:
|
|
cv2.destroyAllWindows()
|
|
break
|
|
|
|
sim_js = robot.get_joints_state()
|
|
sim_js_names = robot.dof_names
|
|
cu_js = JointState(
|
|
position=tensor_args.to_device(sim_js.positions),
|
|
velocity=tensor_args.to_device(sim_js.velocities) * 0.0,
|
|
acceleration=tensor_args.to_device(sim_js.velocities) * 0.0,
|
|
jerk=tensor_args.to_device(sim_js.velocities) * 0.0,
|
|
joint_names=sim_js_names,
|
|
)
|
|
cu_js = cu_js.get_ordered_joint_state(mpc.rollout_fn.joint_names)
|
|
|
|
if cmd_state_full is None:
|
|
current_state.copy_(cu_js)
|
|
else:
|
|
current_state_partial = cmd_state_full.get_ordered_joint_state(
|
|
mpc.rollout_fn.joint_names
|
|
)
|
|
current_state.copy_(current_state_partial)
|
|
current_state.joint_names = current_state_partial.joint_names
|
|
|
|
if current_error <= error_thresh and (not first_target or args.waypoints):
|
|
first_target = True
|
|
# motion generation:
|
|
for ks in range(len(target_material_list)):
|
|
if ks == target_idx:
|
|
target_material_list[ks].set_color(np.ravel([0, 1.0, 0]))
|
|
else:
|
|
target_material_list[ks].set_color(np.ravel([0.1, 0.1, 0.1]))
|
|
|
|
cube_position, cube_orientation = target_list[target_idx].get_world_pose()
|
|
|
|
# Set EE teleop goals, use cube for simple non-vr init:
|
|
ee_translation_goal = cube_position
|
|
ee_orientation_teleop_goal = cube_orientation
|
|
|
|
# compute curobo solution:
|
|
ik_goal = Pose(
|
|
position=tensor_args.to_device(ee_translation_goal),
|
|
quaternion=tensor_args.to_device(ee_orientation_teleop_goal),
|
|
)
|
|
goal_buffer.goal_pose.copy_(ik_goal)
|
|
mpc.update_goal(goal_buffer)
|
|
target_idx += 1
|
|
if target_idx >= len(target_list):
|
|
target_idx = 0
|
|
|
|
if cmd_step_idx == 0:
|
|
mpc_result = mpc.step(current_state, max_attempts=2)
|
|
current_error = mpc_result.metrics.pose_error.item()
|
|
cmd_state_full = mpc_result.js_action
|
|
common_js_names = []
|
|
idx_list = []
|
|
for x in sim_js_names:
|
|
if x in cmd_state_full.joint_names:
|
|
idx_list.append(robot.get_dof_index(x))
|
|
common_js_names.append(x)
|
|
|
|
cmd_state = cmd_state_full.get_ordered_joint_state(common_js_names)
|
|
cmd_state_full = cmd_state
|
|
|
|
art_action = ArticulationAction(
|
|
cmd_state.position.cpu().numpy(),
|
|
# cmd_state.velocity.cpu().numpy(),
|
|
joint_indices=idx_list,
|
|
)
|
|
articulation_controller.apply_action(art_action)
|
|
|
|
if cmd_step_idx == 2:
|
|
cmd_step_idx = 0
|
|
|
|
# positions_goal = a
|
|
if cmd_plan is not None:
|
|
cmd_state = cmd_plan[cmd_idx]
|
|
|
|
# get full dof state
|
|
art_action = ArticulationAction(
|
|
cmd_state.position.cpu().numpy(),
|
|
# cmd_state.velocity.cpu().numpy(),
|
|
joint_indices=idx_list,
|
|
)
|
|
# set desired joint angles obtained from IK:
|
|
articulation_controller.apply_action(art_action)
|
|
cmd_step_idx += 1
|
|
# for _ in range(2):
|
|
# my_world.step(render=False)
|
|
if cmd_idx >= len(cmd_plan.position):
|
|
cmd_idx = 0
|
|
cmd_plan = None
|
|
realsense_data.stop_device()
|
|
print("finished program")
|
|
|
|
simulation_app.close()
|