Files
gen_data_curobo/tests/ik_config_test.py
Balakumar Sundaralingam 58958bbcce update to 0.6.2
2023-12-15 02:01:33 -08:00

151 lines
4.6 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import pytest
import torch
# CuRobo
from curobo.geom.sdf.world import (
CollisionCheckerType,
WorldCollisionConfig,
WorldPrimitiveCollision,
)
from curobo.geom.sdf.world_mesh import WorldMeshCollision
from curobo.geom.types import WorldConfig
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import RobotConfig
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig
def ik_base_config():
tensor_args = TensorDeviceType()
world_file = "collision_cubby.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=100,
self_collision_check=True,
self_collision_opt=True,
tensor_args=tensor_args,
use_cuda_graph=False,
n_collision_envs=1,
collision_cache={"obb": 10},
)
return ik_config
def ik_gd_config():
tensor_args = TensorDeviceType()
world_file = "collision_cubby.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=100,
self_collision_check=True,
self_collision_opt=True,
tensor_args=tensor_args,
use_cuda_graph=False,
use_gradient_descent=True,
grad_iters=100,
)
return ik_config
def ik_es_config():
tensor_args = TensorDeviceType()
world_file = "collision_cubby.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=100,
self_collision_check=True,
self_collision_opt=True,
tensor_args=tensor_args,
use_cuda_graph=False,
use_es=True,
es_learning_rate=0.01,
use_fixed_samples=True,
)
return ik_config
def ik_no_particle_opt_config():
tensor_args = TensorDeviceType()
world_file = "collision_cubby.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=100,
self_collision_check=True,
self_collision_opt=True,
tensor_args=tensor_args,
use_cuda_graph=False,
use_particle_opt=False,
grad_iters=100,
)
return ik_config
@pytest.mark.parametrize(
"config, expected",
[
(ik_base_config(), True),
(ik_es_config(), True),
(ik_gd_config(), -100), # unstable
(ik_no_particle_opt_config(), True),
],
)
def test_eval(config, expected):
ik_solver = IKSolver(config)
q_sample = ik_solver.sample_configs(1)
kin_state = ik_solver.fk(q_sample)
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
result = ik_solver.solve_single(goal)
result = ik_solver.solve_single(goal)
success = result.success
if expected is not -100:
assert success.item() == expected