57 lines
2.0 KiB
Python
57 lines
2.0 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
# Third Party
|
|
import torch
|
|
|
|
# CuRobo
|
|
from curobo.geom.types import WorldConfig
|
|
from curobo.types.base import TensorDeviceType
|
|
from curobo.types.math import Pose
|
|
from curobo.types.robot import RobotConfig
|
|
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
|
|
from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig
|
|
|
|
|
|
def test_multi_pose_franka():
|
|
tensor_args = TensorDeviceType()
|
|
world_file = "collision_cubby.yml"
|
|
|
|
robot_file = "franka.yml"
|
|
robot_data = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
|
|
|
robot_data["kinematics"]["link_names"] = robot_data["kinematics"]["collision_link_names"]
|
|
robot_cfg = RobotConfig.from_dict(robot_data)
|
|
|
|
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
|
|
ik_config = IKSolverConfig.load_from_robot_config(
|
|
robot_cfg,
|
|
world_cfg,
|
|
rotation_threshold=0.05,
|
|
position_threshold=0.005,
|
|
num_seeds=30,
|
|
self_collision_check=True,
|
|
self_collision_opt=True,
|
|
use_cuda_graph=True,
|
|
tensor_args=tensor_args,
|
|
)
|
|
ik_solver = IKSolver(ik_config)
|
|
b_size = 1
|
|
|
|
q_sample = ik_solver.sample_configs(b_size)
|
|
kin_state = ik_solver.fk(q_sample)
|
|
link_poses = kin_state.link_pose
|
|
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
|
|
result = ik_solver.solve_single(goal, link_poses=link_poses)
|
|
|
|
success = result.success
|
|
assert torch.count_nonzero(success).item() >= 1.0 # we check if atleast 90% are successful
|