Files
gen_data_curobo/benchmark/curobo_voxel_profile.py

306 lines
10 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Standard Library
import argparse
from copy import deepcopy
from typing import Optional
# Third Party
import numpy as np
import torch
from robometrics.datasets import demo_raw, motion_benchmaker_raw, mpinets_raw
from torch.profiler import ProfilerActivity, profile, record_function
from tqdm import tqdm
# CuRobo
from curobo.geom.sdf.world import CollisionCheckerType, WorldConfig
from curobo.geom.types import Cuboid
from curobo.geom.types import Cuboid as curobo_Cuboid
from curobo.geom.types import Mesh, VoxelGrid
from curobo.types.base import TensorDeviceType
from curobo.types.camera import CameraObservation
from curobo.types.math import Pose
from curobo.types.robot import RobotConfig
from curobo.types.state import JointState
from curobo.util.logger import setup_curobo_logger
from curobo.util.metrics import CuroboGroupMetrics, CuroboMetrics
from curobo.util_file import (
get_assets_path,
get_robot_configs_path,
get_world_configs_path,
join_path,
load_yaml,
write_yaml,
)
from curobo.wrap.model.robot_world import RobotWorld, RobotWorldConfig
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
torch.manual_seed(0)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
np.random.seed(0)
def load_curobo(
n_cubes: int,
enable_debug: bool = False,
tsteps: int = 30,
trajopt_seeds: int = 4,
mpinets: bool = False,
graph_mode: bool = False,
cuda_graph: bool = True,
collision_activation_distance: float = 0.025,
finetune_dt_scale: float = 1.0,
parallel_finetune: bool = True,
):
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
robot_cfg["kinematics"]["collision_sphere_buffer"] = 0.0
ik_seeds = 30
if graph_mode:
trajopt_seeds = 4
if trajopt_seeds >= 14:
ik_seeds = max(100, trajopt_seeds * 2)
if mpinets:
robot_cfg["kinematics"]["lock_joints"] = {
"panda_finger_joint1": 0.025,
"panda_finger_joint2": 0.025,
}
world_cfg = WorldConfig.from_dict(
{
"voxel": {
"base": {
"dims": [2.0, 2.0, 3.0],
"pose": [0, 0, 0, 1, 0, 0, 0],
"voxel_size": 0.01,
"feature_dtype": torch.float8_e4m3fn,
},
}
}
)
interpolation_steps = 2000
if graph_mode:
interpolation_steps = 100
robot_cfg_instance = RobotConfig.from_dict(robot_cfg, tensor_args=TensorDeviceType())
K = robot_cfg_instance.kinematics.kinematics_config.joint_limits
K.position[0, :] -= 0.2
K.position[1, :] += 0.2
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_cfg_instance,
world_cfg,
trajopt_tsteps=tsteps,
collision_checker_type=CollisionCheckerType.VOXEL,
use_cuda_graph=cuda_graph,
position_threshold=0.005, # 0.5 cm
rotation_threshold=0.05,
num_ik_seeds=ik_seeds,
num_graph_seeds=trajopt_seeds,
num_trajopt_seeds=trajopt_seeds,
interpolation_dt=0.025,
store_ik_debug=enable_debug,
store_trajopt_debug=enable_debug,
interpolation_steps=interpolation_steps,
collision_activation_distance=collision_activation_distance,
trajopt_dt=0.25,
finetune_dt_scale=finetune_dt_scale,
maximum_trajectory_dt=0.16,
finetune_trajopt_iters=300,
)
mg = MotionGen(motion_gen_config)
mg.warmup(enable_graph=True, warmup_js_trajopt=False, parallel_finetune=True)
# create a ground truth collision checker:
config = RobotWorldConfig.load_from_config(
robot_cfg_instance,
"collision_table.yml",
collision_activation_distance=0.0,
collision_checker_type=CollisionCheckerType.PRIMITIVE,
n_cuboids=50,
)
robot_world = RobotWorld(config)
return mg, robot_cfg, robot_world
def benchmark_mb(
write_usd=False,
save_log=False,
write_plot=False,
write_benchmark=False,
plot_cost=False,
override_tsteps: Optional[int] = None,
args=None,
):
# load dataset:
graph_mode = args.graph
interpolation_dt = 0.02
file_paths = [demo_raw, motion_benchmaker_raw, mpinets_raw][:1]
enable_debug = save_log or plot_cost
all_files = []
og_tsteps = 32
if override_tsteps is not None:
og_tsteps = override_tsteps
og_trajopt_seeds = 12
og_collision_activation_distance = 0.01 # 0.03
if args.graph:
og_trajopt_seeds = 4
for file_path in file_paths:
all_groups = []
mpinets_data = False
problems = file_path()
for key, v in tqdm(problems.items()):
scene_problems = problems[key]
m_list = []
i = -1
ik_fail = 0
trajopt_seeds = og_trajopt_seeds
tsteps = og_tsteps
collision_activation_distance = og_collision_activation_distance
finetune_dt_scale = 1.0
parallel_finetune = True
if "cage_panda" in key:
trajopt_seeds = 16
finetune_dt_scale = 0.95
parallel_finetune = True
if "table_under_pick_panda" in key:
tsteps = 36
trajopt_seeds = 16
finetune_dt_scale = 0.95
parallel_finetune = True
# collision_activation_distance = 0.015
if "table_pick_panda" in key:
collision_activation_distance = 0.005
if "cubby_task_oriented" in key: # and "merged" not in key:
trajopt_seeds = 16
finetune_dt_scale = 0.95
collision_activation_distance = 0.005
parallel_finetune = True
if "dresser_task_oriented" in key:
trajopt_seeds = 16
finetune_dt_scale = 0.95
parallel_finetune = True
if key in [
"tabletop_neutral_start",
"merged_cubby_neutral_start",
"cubby_neutral_start",
"cubby_neutral_goal",
"dresser_neutral_start",
"tabletop_task_oriented",
]:
collision_activation_distance = 0.005
if "dresser_task_oriented" in list(problems.keys()):
mpinets_data = True
mg, robot_cfg, robot_world = load_curobo(
0,
enable_debug,
tsteps,
trajopt_seeds,
mpinets_data,
graph_mode,
not args.disable_cuda_graph,
collision_activation_distance=collision_activation_distance,
finetune_dt_scale=finetune_dt_scale,
parallel_finetune=parallel_finetune,
)
for problem in tqdm(scene_problems, leave=False):
i += 1
if problem["collision_buffer_ik"] < 0.0:
continue
plan_config = MotionGenPlanConfig(
max_attempts=10,
enable_graph_attempt=1,
enable_finetune_trajopt=True,
partial_ik_opt=False,
enable_graph=graph_mode,
timeout=60,
enable_opt=not graph_mode,
parallel_finetune=True,
)
q_start = problem["start"]
pose = (
problem["goal_pose"]["position_xyz"] + problem["goal_pose"]["quaternion_wxyz"]
)
# reset planner
mg.reset(reset_seed=False)
world_coll = WorldConfig.from_dict(problem["obstacles"]).get_obb_world()
robot_world.update_world(world_coll)
esdf = robot_world.world_model.get_esdf_in_bounding_box(
Cuboid(name="base", pose=[0, 0, 0, 1, 0, 0, 0], dims=[2, 2, 3]), voxel_size=0.01
)
world_voxel_collision = mg.world_coll_checker
world_voxel_collision.update_voxel_data(esdf)
start_state = JointState.from_position(mg.tensor_args.to_device([q_start]))
for _ in range(2):
result = mg.plan_single(
start_state,
Pose.from_list(pose),
plan_config,
)
print("Profiling...")
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
torch.cuda.profiler.start()
result = mg.plan_single(
start_state,
Pose.from_list(pose),
plan_config,
)
torch.cuda.profiler.stop()
print("Exporting the trace..")
prof.export_chrome_trace("benchmark/log/trace/motion_gen_voxel.json")
exit()
if __name__ == "__main__":
setup_curobo_logger("error")
parser = argparse.ArgumentParser()
parser.add_argument(
"--graph",
action="store_true",
help="When True, runs only geometric planner",
default=False,
)
parser.add_argument(
"--disable_cuda_graph",
action="store_true",
help="When True, disable cuda graph during benchmarking",
default=False,
)
args = parser.parse_args()
benchmark_mb(
save_log=False,
write_usd=False,
write_plot=False,
write_benchmark=False,
plot_cost=False,
args=args,
)