Files
gen_data_curobo/examples/motion_gen_example.py
Balakumar Sundaralingam 0c51dd2da8 improved joint space planning
2024-05-30 14:42:22 -07:00

493 lines
16 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Standard Library
# Third Party
import torch
# CuRobo
from curobo.geom.sdf.world import CollisionCheckerType
from curobo.geom.types import Cuboid, WorldConfig
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import JointState, RobotConfig
from curobo.util.logger import setup_curobo_logger
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
def plot_traj(trajectory, dt, file_name="test.png"):
# Third Party
import matplotlib.pyplot as plt
_, axs = plt.subplots(4, 1)
q = trajectory.position.cpu().numpy()
qd = trajectory.velocity.cpu().numpy()
qdd = trajectory.acceleration.cpu().numpy()
qddd = trajectory.jerk.cpu().numpy()
timesteps = [i * dt for i in range(q.shape[0])]
for i in range(q.shape[-1]):
axs[0].plot(timesteps, q[:, i], label=str(i))
axs[1].plot(timesteps, qd[:, i], label=str(i))
axs[2].plot(timesteps, qdd[:, i], label=str(i))
axs[3].plot(timesteps, qddd[:, i], label=str(i))
plt.legend()
plt.savefig(file_name)
plt.close()
# plt.show()
def plot_iters_traj(trajectory, d_id=1, dof=7, seed=0):
# Third Party
import matplotlib.pyplot as plt
_, axs = plt.subplots(len(trajectory), 1)
if len(trajectory) == 1:
axs = [axs]
for k in range(len(trajectory)):
q = trajectory[k]
for i in range(len(q)):
axs[k].plot(
q[i][seed, :-1, d_id].cpu(),
"r+-",
label=str(i),
alpha=0.1 + min(0.9, float(i) / (len(q))),
)
plt.legend()
plt.show()
def plot_iters_traj_3d(trajectory, d_id=1, dof=7, seed=0):
# Third Party
import matplotlib.pyplot as plt
ax = plt.axes(projection="3d")
c = 0
h = trajectory[0][0].shape[1] - 1
x = [x for x in range(h)]
for k in range(len(trajectory)):
q = trajectory[k]
for i in range(len(q)):
# ax.plot3D(x,[c for _ in range(h)], q[i][seed, :, d_id].cpu())#, 'r')
ax.scatter3D(
x, [c for _ in range(h)], q[i][seed, :h, d_id].cpu(), c=q[i][seed, :, d_id].cpu()
)
# @plt.show()
c += 1
# plt.legend()
plt.show()
def demo_motion_gen_simple():
world_config = {
"mesh": {
"base_scene": {
"pose": [10.5, 0.080, 1.6, 0.043, -0.471, 0.284, 0.834],
"file_path": "scene/nvblox/srl_ur10_bins.obj",
},
},
"cuboid": {
"table": {
"dims": [5.0, 5.0, 0.2], # x, y, z
"pose": [0.0, 0.0, -0.1, 1, 0, 0, 0.0], # x, y, z, qw, qx, qy, qz
},
},
}
motion_gen_config = MotionGenConfig.load_from_robot_config(
"ur5e.yml",
world_config,
interpolation_dt=0.01,
)
motion_gen = MotionGen(motion_gen_config)
motion_gen.warmup()
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.rollout_fn.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
goal_pose = Pose.from_list([-0.4, 0.0, 0.4, 1.0, 0.0, 0.0, 0.0]) # x, y, z, qw, qx, qy, qz
start_state = JointState.from_position(
torch.zeros(1, 6).cuda(),
joint_names=[
"shoulder_pan_joint",
"shoulder_lift_joint",
"elbow_joint",
"wrist_1_joint",
"wrist_2_joint",
"wrist_3_joint",
],
)
result = motion_gen.plan_single(start_state, goal_pose, MotionGenPlanConfig(max_attempts=1))
traj = result.get_interpolated_plan() # result.interpolation_dt has the dt between timesteps
print("Trajectory Generated: ", result.success)
def demo_motion_gen_mesh():
PLOT = False
tensor_args = TensorDeviceType()
world_file = "collision_mesh_scene.yml"
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
# trajopt_tsteps=40,
collision_checker_type=CollisionCheckerType.MESH,
use_cuda_graph=False,
)
motion_gen = MotionGen(motion_gen_config)
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
retract_cfg = robot_cfg.cpsace.retract_config
state = motion_gen.rollout_fn.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze())
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.5)
result = motion_gen.plan(
start_state,
retract_pose,
enable_graph=False,
enable_opt=True,
max_attempts=1,
num_trajopt_seeds=10,
num_graph_seeds=10,
)
print(result.status, result.attempts, result.trajopt_time)
traj = result.raw_plan # optimized plan
print("Trajectory Generated: ", result.success)
if PLOT:
plot_traj(traj.cpu().numpy())
def demo_motion_gen(js=False):
# Standard Library
PLOT = True
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
interpolation_dt=0.01,
# trajopt_dt=0.15,
# velocity_scale=0.1,
use_cuda_graph=True,
# finetune_dt_scale=2.5,
interpolation_steps=10000,
)
motion_gen = MotionGen(motion_gen_config)
motion_gen.warmup()
# motion_gen.warmup(enable_graph=True, warmup_js_trajopt=js, parallel_finetune=True)
# robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
# robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.rollout_fn.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze())
start_state = JointState.from_position(retract_cfg.view(1, -1))
goal_state = start_state.clone()
start_state.position[0, 0] += 0.25
# goal_state.position[0,0] += 0.5
if js:
result = motion_gen.plan_single_js(
start_state,
goal_state,
MotionGenPlanConfig(max_attempts=1, time_dilation_factor=0.5),
)
else:
result = motion_gen.plan_single(
start_state,
retract_pose,
MotionGenPlanConfig(
max_attempts=1,
timeout=5,
time_dilation_factor=0.5,
),
)
new_result = result.clone()
new_result.retime_trajectory(0.5, create_interpolation_buffer=True)
print(new_result.optimized_dt, new_result.motion_time, result.motion_time)
print(
"Trajectory Generated: ",
result.success,
result.solve_time,
result.status,
result.optimized_dt,
)
if PLOT and result.success.item():
traj = result.get_interpolated_plan()
plot_traj(traj, result.interpolation_dt)
plot_traj(new_result.get_interpolated_plan(), new_result.interpolation_dt, "test_slow.png")
# plt.save("test.png")
# plt.close()
# traj = result.debug_info["opt_solution"].position.view(-1,7)
# plot_traj(traj.cpu().numpy())
def demo_motion_gen_debug():
PLOT = True
tensor_args = TensorDeviceType()
world_file = "collision_cubby.yml"
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
trajopt_tsteps=24,
collision_checker_type=CollisionCheckerType.PRIMITIVE,
use_cuda_graph=True,
num_trajopt_seeds=1,
num_graph_seeds=1,
store_ik_debug=True,
store_trajopt_debug=True,
trajopt_particle_opt=False,
grad_trajopt_iters=100,
)
motion_gen = MotionGen(motion_gen_config)
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
retract_cfg = robot_cfg.cspace.retract_config
state = motion_gen.rollout_fn.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze())
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.4)
result = motion_gen.plan(start_state, retract_pose, enable_graph=True, enable_opt=True)
if result.status not in [None, "Opt Fail"]:
return
traj = result.plan.view(-1, 7) # optimized plan
print("Trajectory Generated: ", result.success)
trajectory_iter_steps = result.debug_info["trajopt_result"].debug_info["solver"]["steps"]
if PLOT:
plot_iters_traj_3d(trajectory_iter_steps, d_id=6)
# plot_traj(traj.cpu().numpy())
def demo_motion_gen_batch():
PLOT = False
tensor_args = TensorDeviceType()
world_file = "collision_cubby.yml"
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
collision_checker_type=CollisionCheckerType.PRIMITIVE,
use_cuda_graph=True,
num_trajopt_seeds=12,
num_graph_seeds=1,
num_ik_seeds=30,
)
motion_gen = MotionGen(motion_gen_config)
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.rollout_fn.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze())
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.6)
retract_pose = retract_pose.repeat_seeds(2)
retract_pose.position[0, 0] = -0.3
result = motion_gen.plan_batch(
start_state.repeat_seeds(2),
retract_pose,
MotionGenPlanConfig(
max_attempts=5, enable_graph=False, enable_graph_attempt=1, enable_opt=True
),
)
traj = result.optimized_plan.position.view(2, -1, 7) # optimized plan
print("Trajectory Generated: ", result.success)
if PLOT:
plot_traj(traj[0, : result.path_buffer_last_tstep[0], :].cpu().numpy())
plot_traj(traj[1, : result.path_buffer_last_tstep[1], :].cpu().numpy())
def demo_motion_gen_goalset():
tensor_args = TensorDeviceType()
world_file = "collision_cubby.yml"
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
collision_checker_type=CollisionCheckerType.PRIMITIVE,
use_cuda_graph=True,
num_trajopt_seeds=12,
num_graph_seeds=1,
num_ik_seeds=30,
)
motion_gen = MotionGen(motion_gen_config)
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.rollout_fn.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.6)
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = Pose(
state.ee_pos_seq.repeat(2, 1).view(1, -1, 3),
quaternion=state.ee_quat_seq.repeat(2, 1).view(1, -1, 4),
)
goal_pose.position[0, 0, 0] -= 0.1
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
result = motion_gen.plan_goalset(start_state, goal_pose, m_config)
def demo_motion_gen_api():
tensor_args = TensorDeviceType(device=torch.device("cuda:0"))
interpolation_dt = 0.02
# create motion gen with a cuboid cache to be able to load obstacles later:
motion_gen_cfg = MotionGenConfig.load_from_robot_config(
"franka.yml",
"collision_table.yml",
tensor_args,
trajopt_tsteps=34,
interpolation_steps=5000,
num_ik_seeds=50,
num_trajopt_seeds=6,
collision_checker_type=CollisionCheckerType.PRIMITIVE,
grad_trajopt_iters=500,
trajopt_dt=0.5,
interpolation_dt=interpolation_dt,
evaluate_interpolated_trajectory=True,
js_trajopt_dt=0.5,
js_trajopt_tsteps=34,
)
motion_gen = MotionGen(motion_gen_cfg)
motion_gen.warmup(warmup_js_trajopt=False)
# create world representation:
cuboids = [Cuboid(name="obs_1", pose=[0, 0, 0, 1, 0, 0, 0], dims=[0.1, 0.1, 0.1])]
world = WorldConfig(cuboid=cuboids)
motion_gen.update_world(world)
q_start = JointState.from_position(
tensor_args.to_device([[0.0, -1.3, 0.0, -2.5, 0.0, 1.0, 0.0]]),
joint_names=[
"panda_joint1",
"panda_joint2",
"panda_joint3",
"panda_joint4",
"panda_joint5",
"panda_joint6",
"panda_joint7",
],
)
goal_pose = Pose(
position=tensor_args.to_device([[0.5, 0.0, 0.3]]),
quaternion=tensor_args.to_device([[1, 0, 0, 0]]),
)
print(goal_pose)
result = motion_gen.plan_single(q_start, goal_pose)
# get result:
interpolated_solution = result.get_interpolated_plan()
print(result.get_interpolated_plan())
def demo_motion_gen_batch_env(n_envs: int = 10):
tensor_args = TensorDeviceType()
world_files = ["collision_table.yml" for _ in range(int(n_envs / 2))] + [
"collision_test.yml" for _ in range(int(n_envs / 2))
]
world_cfg = [
WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
for world_file in world_files
]
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_cfg,
tensor_args,
trajopt_tsteps=30,
use_cuda_graph=False,
num_trajopt_seeds=4,
num_ik_seeds=30,
num_batch_ik_seeds=30,
evaluate_interpolated_trajectory=True,
interpolation_dt=0.05,
interpolation_steps=500,
grad_trajopt_iters=30,
)
motion_gen_batch_env = MotionGen(motion_gen_config)
motion_gen_batch_env.reset()
motion_gen_batch_env.warmup(
enable_graph=False, batch=n_envs, warmup_js_trajopt=False, batch_env_mode=True
)
retract_cfg = motion_gen_batch_env.get_retract_config().clone()
state = motion_gen_batch_env.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
goal_pose = Pose(
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
).repeat_seeds(n_envs)
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(n_envs)
goal_pose.position[1, 0] -= 0.2
m_config = MotionGenPlanConfig(
False, True, max_attempts=1, enable_graph_attempt=None, enable_finetune_trajopt=False
)
result = motion_gen_batch_env.plan_batch_env(start_state, goal_pose, m_config)
print(n_envs, result.total_time, result.total_time / n_envs)
if __name__ == "__main__":
setup_curobo_logger("error")
demo_motion_gen(js=False)
# demo_motion_gen_simple()
# demo_motion_gen_batch()
# demo_motion_gen_goalset()
# n = [2, 10]
# for n_envs in n:
# demo_motion_gen_batch_env(n_envs=n_envs)