189 lines
6.0 KiB
Python
189 lines
6.0 KiB
Python
#
|
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
# property and proprietary rights in and to this material, related
|
|
# documentation and any modifications thereto. Any use, reproduction,
|
|
# disclosure or distribution of this material and related documentation
|
|
# without an express license agreement from NVIDIA CORPORATION or
|
|
# its affiliates is strictly prohibited.
|
|
#
|
|
|
|
# Standard Library
|
|
import argparse
|
|
import time
|
|
from typing import Any, Dict, List
|
|
|
|
# Third Party
|
|
import numpy as np
|
|
import torch
|
|
|
|
# from geometrout.primitive import Cuboid, Cylinder
|
|
# from geometrout.transform import SE3
|
|
# from robometrics.robot import CollisionSphereConfig, Robot
|
|
from torch.profiler import ProfilerActivity, profile, record_function
|
|
from tqdm import tqdm
|
|
|
|
# CuRobo
|
|
from curobo.geom.sdf.world import CollisionCheckerType, WorldConfig
|
|
from curobo.geom.types import Mesh
|
|
from curobo.types.math import Pose
|
|
from curobo.types.state import JointState
|
|
from curobo.util.logger import setup_curobo_logger
|
|
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
|
|
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
|
|
|
# torch.set_num_threads(8)
|
|
# ttorch.use_deterministic_algorithms(True)
|
|
torch.manual_seed(0)
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
np.random.seed(10)
|
|
# Third Party
|
|
from robometrics.datasets import demo_raw
|
|
|
|
|
|
def load_curobo(
|
|
n_cubes: int, enable_log: bool = False, mesh_mode: bool = False, cuda_graph: bool = False
|
|
):
|
|
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
|
|
robot_cfg["kinematics"]["collision_sphere_buffer"] = -0.0
|
|
world_cfg = WorldConfig.from_dict(
|
|
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
|
|
).get_obb_world()
|
|
|
|
c_checker = CollisionCheckerType.PRIMITIVE
|
|
c_cache = {"obb": n_cubes}
|
|
if mesh_mode:
|
|
c_checker = CollisionCheckerType.MESH
|
|
c_cache = {"mesh": n_cubes}
|
|
world_cfg = world_cfg.get_mesh_world()
|
|
|
|
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
|
robot_cfg,
|
|
world_cfg,
|
|
trajopt_tsteps=32,
|
|
collision_checker_type=c_checker,
|
|
use_cuda_graph=cuda_graph,
|
|
collision_cache=c_cache,
|
|
ee_link_name="panda_hand",
|
|
position_threshold=0.005,
|
|
rotation_threshold=0.05,
|
|
num_ik_seeds=30,
|
|
num_trajopt_seeds=10,
|
|
interpolation_dt=0.02,
|
|
# grad_trajopt_iters=200,
|
|
store_ik_debug=enable_log,
|
|
store_trajopt_debug=enable_log,
|
|
)
|
|
mg = MotionGen(motion_gen_config)
|
|
mg.warmup(enable_graph=False)
|
|
return mg
|
|
|
|
|
|
def benchmark_mb(args):
|
|
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
|
|
spheres = robot_cfg["kinematics"]["collision_spheres"]
|
|
if isinstance(spheres, str):
|
|
spheres = load_yaml(join_path(get_robot_configs_path(), spheres))["collision_spheres"]
|
|
|
|
plan_config = MotionGenPlanConfig(
|
|
max_attempts=2,
|
|
enable_graph_attempt=3,
|
|
enable_finetune_trajopt=True,
|
|
partial_ik_opt=False,
|
|
enable_graph=False,
|
|
)
|
|
# load dataset:
|
|
|
|
file_paths = [demo_raw]
|
|
all_files = []
|
|
for file_path in file_paths:
|
|
all_groups = []
|
|
|
|
problems = file_path()
|
|
|
|
for key, v in tqdm(problems.items()):
|
|
# if key not in ["table_under_pick_panda"]:
|
|
# continue
|
|
scene_problems = problems[key] # [:2]
|
|
n_cubes = check_problems(scene_problems)
|
|
mg = load_curobo(n_cubes, False, args.mesh, args.cuda_graph)
|
|
m_list = []
|
|
i = 0
|
|
for problem in tqdm(scene_problems, leave=False):
|
|
q_start = problem["start"]
|
|
|
|
pose = (
|
|
problem["goal_pose"]["position_xyz"] + problem["goal_pose"]["quaternion_wxyz"]
|
|
)
|
|
|
|
# reset planner
|
|
mg.reset(reset_seed=False)
|
|
if args.mesh:
|
|
world = WorldConfig.from_dict(problem["obstacles"]).get_mesh_world()
|
|
|
|
else:
|
|
world = WorldConfig.from_dict(problem["obstacles"]).get_obb_world()
|
|
|
|
mg.update_world(world)
|
|
# continue
|
|
# load obstacles
|
|
|
|
# run planner
|
|
start_state = JointState.from_position(mg.tensor_args.to_device([q_start]))
|
|
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
|
|
result = mg.plan_single(
|
|
start_state,
|
|
Pose.from_list(pose),
|
|
plan_config,
|
|
)
|
|
print("Exporting the trace..")
|
|
prof.export_chrome_trace(join_path(args.save_path, args.file_name) + ".json")
|
|
print(result.success, result.status)
|
|
exit()
|
|
|
|
|
|
def check_problems(all_problems):
|
|
n_cube = 0
|
|
for problem in all_problems:
|
|
cache = WorldConfig.from_dict(problem["obstacles"]).get_obb_world().get_cache_dict()
|
|
n_cube = max(n_cube, cache["obb"])
|
|
return n_cube
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--save_path",
|
|
type=str,
|
|
default="benchmark/log/trace",
|
|
help="path to save file",
|
|
)
|
|
parser.add_argument(
|
|
"--file_name",
|
|
type=str,
|
|
default="motion_gen_trace",
|
|
help="File name prefix to use to save benchmark results",
|
|
)
|
|
parser.add_argument(
|
|
"--mesh",
|
|
action="store_true",
|
|
help="When True, converts obstacles to meshes",
|
|
default=False,
|
|
)
|
|
parser.add_argument(
|
|
"--cuda_graph",
|
|
action="store_true",
|
|
help="When True, uses cuda graph during profiing",
|
|
default=False,
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
setup_curobo_logger("error")
|
|
benchmark_mb(args)
|