Files
gen_data_curobo/examples/robot_image_segmentation_example.py

496 lines
16 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
""" This example shows how to use cuRobo's kinematics to generate a mask. """
# Standard Library
import time
# Third Party
import imageio
import numpy as np
import torch
import torch.autograd.profiler as profiler
from nvblox_torch.datasets.mesh_dataset import MeshDataset
from torch.profiler import ProfilerActivity, profile, record_function
# CuRobo
from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel
from curobo.geom.types import PointCloud, WorldConfig
from curobo.types.base import TensorDeviceType
from curobo.types.camera import CameraObservation
from curobo.types.math import Pose
from curobo.types.robot import RobotConfig
from curobo.types.state import JointState
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.model.robot_segmenter import RobotSegmenter
torch.manual_seed(30)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def create_render_dataset(
robot_file,
save_debug_data: bool = False,
fov_deg: float = 60,
n_frames: int = 20,
retract_delta: float = 0.0,
):
# load robot:
robot_dict = load_yaml(join_path(get_robot_configs_path(), robot_file))
robot_dict["robot_cfg"]["kinematics"]["load_link_names_with_mesh"] = True
robot_dict["robot_cfg"]["kinematics"]["load_meshes"] = True
robot_cfg = RobotConfig.from_dict(robot_dict["robot_cfg"])
kin_model = CudaRobotModel(robot_cfg.kinematics)
q = kin_model.retract_config
q += retract_delta
meshes = kin_model.get_robot_as_mesh(q)
world = WorldConfig(mesh=meshes[:])
world_table = WorldConfig.from_dict(
load_yaml(join_path(get_world_configs_path(), "collision_test.yml"))
)
world_table.cuboid[0].dims = [0.5, 0.5, 0.1]
world.add_obstacle(world_table.objects[0])
world.add_obstacle(world_table.objects[1])
if save_debug_data:
world.save_world_as_mesh("scene.stl", process_color=False)
robot_mesh = (
WorldConfig.create_merged_mesh_world(world, process_color=False).mesh[0].get_trimesh_mesh()
)
mesh_dataset = MeshDataset(
None,
n_frames=n_frames,
image_size=640,
save_data_dir=None,
trimesh_mesh=robot_mesh,
fov_deg=fov_deg,
)
q_js = JointState(position=q, joint_names=kin_model.joint_names)
return mesh_dataset, q_js
def mask_image(robot_file="ur5e.yml"):
save_debug_data = False
write_pointcloud = False
# create robot segmenter:
tensor_args = TensorDeviceType()
curobo_segmenter = RobotSegmenter.from_robot_file(
robot_file, collision_sphere_buffer=0.01, distance_threshold=0.05, use_cuda_graph=True
)
mesh_dataset, q_js = create_render_dataset(robot_file, write_pointcloud, n_frames=20)
if save_debug_data:
visualize_scale = 10.0
data = mesh_dataset[0]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
# save depth image
imageio.imwrite(
"camera_depth.png",
(cam_obs.depth_image * visualize_scale)
.squeeze()
.detach()
.cpu()
.numpy()
.astype(np.uint16),
)
# save robot spheres in current joint configuration
robot_kinematics = curobo_segmenter._robot_world.kinematics
if write_pointcloud:
sph = robot_kinematics.get_robot_as_spheres(q_js.position)
WorldConfig(sphere=sph[0]).save_world_as_mesh("robot_spheres.stl")
# save world pointcloud in robot origin
pc = cam_obs.get_pointcloud()
pc_obs = PointCloud("world", pose=cam_obs.pose.to_list(), points=pc)
pc_obs.save_as_mesh("camera_pointcloud.stl", transform_with_pose=True)
# run segmentation:
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs,
q_js,
)
# save robot points as mesh
robot_mask = cam_obs.clone()
robot_mask.depth_image[~depth_mask] = 0.0
if write_pointcloud:
robot_mesh = PointCloud(
"world", pose=robot_mask.pose.to_list(), points=robot_mask.get_pointcloud()
)
robot_mesh.save_as_mesh("robot_segmented.stl", transform_with_pose=True)
# save depth image
imageio.imwrite(
"robot_depth.png",
(robot_mask.depth_image * visualize_scale)
.detach()
.squeeze()
.cpu()
.numpy()
.astype(np.uint16),
)
# save world points as mesh
world_mask = cam_obs.clone()
world_mask.depth_image[depth_mask] = 0.0
if write_pointcloud:
world_mesh = PointCloud(
"world", pose=world_mask.pose.to_list(), points=world_mask.get_pointcloud()
)
world_mesh.save_as_mesh("world_segmented.stl", transform_with_pose=True)
imageio.imwrite(
"world_depth.png",
(world_mask.depth_image * visualize_scale)
.detach()
.squeeze()
.cpu()
.numpy()
.astype(np.uint16),
)
dt_list = []
for i in range(len(mesh_dataset)):
data = mesh_dataset[i]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
if not curobo_segmenter.ready:
curobo_segmenter.update_camera_projection(cam_obs)
st_time = time.time()
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs,
q_js,
)
torch.cuda.synchronize()
dt_list.append(time.time() - st_time)
print("Segmentation Time (ms), (hz)", np.mean(dt_list[5:]) * 1000.0, 1.0 / np.mean(dt_list[5:]))
def batch_mask_image(robot_file="ur5e.yml"):
"""Mask images from different camera views using batched query.
Note: This only works for a single joint configuration across camera views.
Args:
robot_file: robot to use for example.
"""
save_debug_data = True
# create robot segmenter:
tensor_args = TensorDeviceType()
curobo_segmenter = RobotSegmenter.from_robot_file(
robot_file, collision_sphere_buffer=0.01, distance_threshold=0.05, use_cuda_graph=True
)
mesh_dataset, q_js = create_render_dataset(robot_file, save_debug_data, fov_deg=60)
mesh_dataset_zoom, q_js = create_render_dataset(
robot_file, save_debug_data, fov_deg=40, n_frames=30
)
if save_debug_data:
visualize_scale = 10.0
data = mesh_dataset[0]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
data_zoom = mesh_dataset_zoom[1]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
cam_obs_zoom = CameraObservation(
depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000,
intrinsics=data_zoom["intrinsics"],
pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)),
)
cam_obs = cam_obs.stack(cam_obs_zoom)
for i in range(cam_obs.depth_image.shape[0]):
# save depth image
imageio.imwrite(
"camera_depth_" + str(i) + ".png",
(cam_obs.depth_image[i] * visualize_scale)
.squeeze()
.detach()
.cpu()
.numpy()
.astype(np.uint16),
)
# run segmentation:
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs,
q_js,
)
# save robot points as mesh
robot_mask = cam_obs.clone()
robot_mask.depth_image[~depth_mask] = 0.0
for i in range(cam_obs.depth_image.shape[0]):
# save depth image
imageio.imwrite(
"robot_depth_" + str(i) + ".png",
(robot_mask.depth_image[i] * visualize_scale)
.detach()
.squeeze()
.cpu()
.numpy()
.astype(np.uint16),
)
# save world points as mesh
imageio.imwrite(
"world_depth_" + str(i) + ".png",
(filtered_image[i] * visualize_scale)
.detach()
.squeeze()
.cpu()
.numpy()
.astype(np.uint16),
)
dt_list = []
for i in range(len(mesh_dataset)):
data = mesh_dataset[i]
data_zoom = mesh_dataset_zoom[i + 1]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
cam_obs_zoom = CameraObservation(
depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000,
intrinsics=data_zoom["intrinsics"],
pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)),
)
cam_obs = cam_obs.stack(cam_obs_zoom)
if not curobo_segmenter.ready:
curobo_segmenter.update_camera_projection(cam_obs)
st_time = time.time()
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs,
q_js,
)
torch.cuda.synchronize()
dt_list.append(time.time() - st_time)
print("Segmentation Time (ms), (hz)", np.mean(dt_list[5:]) * 1000.0, 1.0 / np.mean(dt_list[5:]))
def batch_robot_mask_image(robot_file="ur5e.yml"):
"""Mask images from different camera views using batched query.
Note: This example treats each image to have different robot joint configuration
Args:
robot_file: robot to use for example.
"""
save_debug_data = True
# create robot segmenter:
tensor_args = TensorDeviceType()
curobo_segmenter = RobotSegmenter.from_robot_file(
robot_file, collision_sphere_buffer=0.01, distance_threshold=0.05, use_cuda_graph=True
)
mesh_dataset, q_js = create_render_dataset(robot_file, save_debug_data, fov_deg=60)
mesh_dataset_zoom, q_js_zoom = create_render_dataset(
robot_file, save_debug_data, fov_deg=60, retract_delta=-0.5
)
q_js = q_js.unsqueeze(0)
q_js = q_js.stack(q_js_zoom.unsqueeze(0))
if save_debug_data:
visualize_scale = 10.0
data = mesh_dataset[0]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
data_zoom = mesh_dataset_zoom[0]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
cam_obs_zoom = CameraObservation(
depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000,
intrinsics=data_zoom["intrinsics"],
pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)),
)
cam_obs = cam_obs.stack(cam_obs_zoom)
for i in range(cam_obs.depth_image.shape[0]):
# save depth image
imageio.imwrite(
"camera_depth_" + str(i) + ".png",
(cam_obs.depth_image[i] * visualize_scale)
.squeeze()
.detach()
.cpu()
.numpy()
.astype(np.uint16),
)
# run segmentation:
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs,
q_js,
)
# save robot points as mesh
robot_mask = cam_obs.clone()
robot_mask.depth_image[~depth_mask] = 0.0
for i in range(cam_obs.depth_image.shape[0]):
# save depth image
imageio.imwrite(
"robot_depth_" + str(i) + ".png",
(robot_mask.depth_image[i] * visualize_scale)
.detach()
.squeeze()
.cpu()
.numpy()
.astype(np.uint16),
)
# save world points as mesh
imageio.imwrite(
"world_depth_" + str(i) + ".png",
(filtered_image[i] * visualize_scale)
.detach()
.squeeze()
.cpu()
.numpy()
.astype(np.uint16),
)
dt_list = []
for i in range(len(mesh_dataset)):
data = mesh_dataset[i]
data_zoom = mesh_dataset_zoom[i]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
cam_obs_zoom = CameraObservation(
depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000,
intrinsics=data_zoom["intrinsics"],
pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)),
)
cam_obs = cam_obs.stack(cam_obs_zoom)
if not curobo_segmenter.ready:
curobo_segmenter.update_camera_projection(cam_obs)
st_time = time.time()
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs,
q_js,
)
torch.cuda.synchronize()
dt_list.append(time.time() - st_time)
print("Segmentation Time (ms), (hz)", np.mean(dt_list[5:]) * 1000.0, 1.0 / np.mean(dt_list[5:]))
def profile_mask_image(robot_file="ur5e.yml"):
# create robot segmenter:
tensor_args = TensorDeviceType()
curobo_segmenter = RobotSegmenter.from_robot_file(
robot_file, collision_sphere_buffer=0.0, distance_threshold=0.05, use_cuda_graph=False
)
mesh_dataset, q_js = create_render_dataset(robot_file)
dt_list = []
data = mesh_dataset[0]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
if not curobo_segmenter.ready:
curobo_segmenter.update_camera_projection(cam_obs)
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(cam_obs, q_js)
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
for i in range(len(mesh_dataset)):
with profiler.record_function("get_data"):
data = mesh_dataset[i]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
st_time = time.time()
with profiler.record_function("segmentation"):
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs, q_js
)
print("Exporting the trace..")
prof.export_chrome_trace("segmentation.json")
if __name__ == "__main__":
mask_image()
# profile_mask_image()
# batch_mask_image()
# batch_robot_mask_image()