Files
gen_data_curobo/tests/motion_gen_cuda_graph_test.py
2024-04-25 12:24:17 -07:00

331 lines
11 KiB
Python

#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import pytest
import torch
# CuRobo
from curobo.geom.types import WorldConfig
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import JointState, RobotConfig
from curobo.util.trajectory import InterpolateType
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
@pytest.fixture(scope="function")
def motion_gen():
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
use_cuda_graph=False,
)
motion_gen_instance = MotionGen(motion_gen_config)
return motion_gen_instance
@pytest.fixture(scope="function")
def motion_gen_batch_env():
tensor_args = TensorDeviceType()
world_files = ["collision_table.yml", "collision_test.yml"]
world_cfg = [
WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
for world_file in world_files
]
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_cfg,
tensor_args,
use_cuda_graph=False,
)
motion_gen_instance = MotionGen(motion_gen_config)
return motion_gen_instance
@pytest.mark.parametrize(
"motion_gen_str,interpolation",
[
("motion_gen", InterpolateType.LINEAR),
("motion_gen", InterpolateType.CUBIC),
# ("motion_gen", InterpolateType.KUNZ_STILMAN_OPTIMAL),
("motion_gen", InterpolateType.LINEAR_CUDA),
],
)
def test_motion_gen_single(motion_gen_str, interpolation, request):
motion_gen = request.getfixturevalue(motion_gen_str)
motion_gen.update_interpolation_type(interpolation)
motion_gen.warmup()
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = Pose(state.ee_pos_seq, quaternion=state.ee_quat_seq)
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
m_config = MotionGenPlanConfig(False, True)
result = motion_gen.plan_single(start_state, goal_pose, m_config)
# get final solutions:
assert torch.count_nonzero(result.success) == 1
reached_state = motion_gen.compute_kinematics(result.optimized_plan[-1])
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
def test_motion_gen_goalset(motion_gen):
motion_gen.warmup(n_goalset=2)
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = Pose(
state.ee_pos_seq.repeat(2, 1).view(1, -1, 3),
quaternion=state.ee_quat_seq.repeat(2, 1).view(1, -1, 4),
)
goal_pose.position[0, 0, 0] -= 0.1
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
m_config = MotionGenPlanConfig(False, True)
result = motion_gen.plan_goalset(start_state, goal_pose, m_config)
# get final solutions:
assert torch.count_nonzero(result.success) == 1
reached_state = motion_gen.compute_kinematics(result.optimized_plan[-1])
assert (
torch.min(
torch.norm(goal_pose.position[:, 0, :] - reached_state.ee_pos_seq),
torch.norm(goal_pose.position[:, 1, :] - reached_state.ee_pos_seq),
)
< 0.005
)
assert result.goalset_index is not None
assert (
torch.norm(goal_pose.position[:, result.goalset_index, :] - reached_state.ee_pos_seq)
< 0.005
)
def test_motion_gen_batch_goalset(motion_gen):
motion_gen.warmup(n_goalset=3, batch=3, warmup_js_trajopt=False, enable_graph=False)
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = Pose(
state.ee_pos_seq.repeat(6, 1).view(3, -1, 3).clone(),
quaternion=state.ee_quat_seq.repeat(6, 1).view(3, -1, 4).clone(),
)
goal_pose.position[0, 1, 1] = 0.2
goal_pose.position[1, 0, 1] = 0.2
goal_pose.position[2, 1, 1] = 0.2
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.2).repeat_seeds(3)
m_config = MotionGenPlanConfig(False, True, max_attempts=1, enable_graph_attempt=None)
result = motion_gen.plan_batch_goalset(start_state, goal_pose, m_config)
# get final solutions:
assert torch.count_nonzero(result.success) == result.success.shape[0]
reached_state = motion_gen.compute_kinematics(result.optimized_plan.trim_trajectory(-1))
#
goal_position = torch.cat(
[
goal_pose.position[x, result.goalset_index[x], :].unsqueeze(0)
for x in range(len(result.goalset_index))
]
)
assert result.goalset_index is not None
assert torch.max(torch.norm(goal_position - reached_state.ee_pos_seq, dim=-1)) < 0.005
def test_motion_gen_batch(motion_gen):
motion_gen.warmup(batch=2)
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = Pose(
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
).repeat_seeds(2)
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
goal_pose.position[1, 0] -= 0.1
m_config = MotionGenPlanConfig(False, True)
result = motion_gen.plan_batch(start_state, goal_pose.clone(), m_config)
assert torch.count_nonzero(result.success) == 2
# get final solutions:
q = result.optimized_plan.trim_trajectory(-1).squeeze(1)
reached_state = motion_gen.compute_kinematics(q)
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
@pytest.mark.parametrize(
"motion_gen_str,interpolation",
[
("motion_gen", InterpolateType.LINEAR),
("motion_gen", InterpolateType.CUBIC),
# ("motion_gen", InterpolateType.KUNZ_STILMAN_OPTIMAL),
("motion_gen", InterpolateType.LINEAR_CUDA),
],
)
def test_motion_gen_batch_graph(motion_gen_str: str, interpolation: InterpolateType, request):
motion_gen = request.getfixturevalue(motion_gen_str)
motion_gen.graph_planner.interpolation_type = interpolation
motion_gen.reset()
retract_cfg = motion_gen.get_retract_config()
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
goal_pose = Pose(
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
).repeat_seeds(5)
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(5)
goal_pose.position[1, 0] -= 0.05
m_config = MotionGenPlanConfig(True, False)
result = motion_gen.plan_batch(start_state, goal_pose, m_config)
assert torch.count_nonzero(result.success) > 0
# get final solutions:
q = result.interpolated_plan.trim_trajectory(-1).squeeze(1)
reached_state = motion_gen.compute_kinematics(q)
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
def test_motion_gen_batch_env(motion_gen_batch_env):
motion_gen_batch_env.warmup(batch=2, batch_env_mode=True, enable_graph=False)
# motion_gen_batch_env.reset()
retract_cfg = motion_gen_batch_env.get_retract_config()
state = motion_gen_batch_env.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
goal_pose = Pose(
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
).repeat_seeds(2)
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
goal_pose.position[1, 0] -= 0.1
m_config = MotionGenPlanConfig(False, True, max_attempts=1)
result = motion_gen_batch_env.plan_batch_env(start_state, goal_pose, m_config)
assert torch.count_nonzero(result.success) == 2
# get final solutions:
reached_state = motion_gen_batch_env.compute_kinematics(
result.optimized_plan.trim_trajectory(-1).squeeze(1)
)
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
def test_motion_gen_batch_env_goalset(motion_gen_batch_env):
motion_gen_batch_env.warmup(batch=2, batch_env_mode=True, n_goalset=2, enable_graph=False)
retract_cfg = motion_gen_batch_env.get_retract_config()
state = motion_gen_batch_env.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
goal_pose = Pose(
state.ee_pos_seq.repeat(4, 1).view(2, -1, 3),
quaternion=state.ee_quat_seq.repeat(4, 1).view(2, -1, 4),
)
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
goal_pose.position[1, 0] -= 0.2
m_config = MotionGenPlanConfig(False, True, enable_graph_attempt=None)
result = motion_gen_batch_env.plan_batch_env_goalset(start_state, goal_pose, m_config)
assert torch.count_nonzero(result.success) > 0
# get final solutions:
reached_state = motion_gen_batch_env.compute_kinematics(
result.optimized_plan.trim_trajectory(-1).squeeze(1)
)
assert (
torch.min(
torch.norm(goal_pose.position[:, 0, :] - reached_state.ee_pos_seq),
torch.norm(goal_pose.position[:, 1, :] - reached_state.ee_pos_seq),
)
< 0.005
)
goal_position = torch.cat(
[
goal_pose.position[x, result.goalset_index[x], :].unsqueeze(0)
for x in range(len(result.goalset_index))
]
)
assert result.goalset_index is not None
assert torch.max(torch.norm(goal_position - reached_state.ee_pos_seq, dim=-1)) < 0.005
@pytest.mark.parametrize(
"motion_gen_str,enable_graph",
[
("motion_gen", True),
("motion_gen", False),
],
)
def test_motion_gen_single_js(motion_gen_str, enable_graph, request):
motion_gen = request.getfixturevalue(motion_gen_str)
motion_gen.warmup(warmup_js_trajopt=True)
retract_cfg = motion_gen.get_retract_config()
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
m_config = MotionGenPlanConfig(enable_graph=enable_graph, max_attempts=2)
goal_state = start_state.clone()
goal_state.position -= 0.3
result = motion_gen.plan_single_js(start_state, goal_state, m_config)
assert torch.count_nonzero(result.success) == 1
reached_state = result.optimized_plan[-1]
assert torch.norm(goal_state.position - reached_state.position) < 0.05