# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # Third Party import pytest import torch # CuRobo from curobo.geom.types import WorldConfig from curobo.rollout.rollout_base import Goal from curobo.types.base import TensorDeviceType from curobo.types.math import Pose from curobo.types.robot import JointState, RobotConfig from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml from curobo.wrap.reacher.trajopt import TrajOptSolver, TrajOptSolverConfig @pytest.fixture(scope="function") def trajopt_solver(): tensor_args = TensorDeviceType() world_file = "collision_table.yml" robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) trajopt_config = TrajOptSolverConfig.load_from_robot_config( robot_cfg, world_cfg, tensor_args, use_cuda_graph=False, evaluate_interpolated_trajectory=True, ) trajopt_solver = TrajOptSolver(trajopt_config) return trajopt_solver @pytest.fixture(scope="function") def trajopt_solver_batch_env(): tensor_args = TensorDeviceType() world_files = ["collision_table.yml", "collision_cubby.yml", "collision_test.yml"] world_cfg = [ WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) for world_file in world_files ] robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) # world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) trajopt_config = TrajOptSolverConfig.load_from_robot_config( robot_cfg, world_cfg, tensor_args, use_cuda_graph=False, num_seeds=10, evaluate_interpolated_trajectory=True, ) trajopt_solver = TrajOptSolver(trajopt_config) return trajopt_solver def test_trajopt_single_js(trajopt_solver): q_start = trajopt_solver.retract_config q_goal = q_start.clone() + 0.2 goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) # do single planning: js_goal = Goal(goal_state=goal_state, current_state=current_state) result = trajopt_solver.solve_single(js_goal) traj = result.solution.position[..., -1, :].view(q_goal.shape) assert torch.linalg.norm((goal_state.position - traj)).item() < 5e-3 assert result.success.item() def test_trajopt_single_pose(trajopt_solver): trajopt_solver.reset_seed() q_start = trajopt_solver.retract_config q_goal = q_start.clone() + 0.1 kin_state = trajopt_solver.fk(q_goal) goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion) goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) js_goal = Goal(goal_pose=goal_pose, goal_state=goal_state, current_state=current_state) result = trajopt_solver.solve_single(js_goal) assert result.success.item() def test_trajopt_single_pose_no_seed(trajopt_solver): trajopt_solver.reset_seed() q_start = trajopt_solver.retract_config q_goal = q_start.clone() + 0.05 kin_state = trajopt_solver.fk(q_goal) goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion) current_state = JointState.from_position(q_start) js_goal = Goal(goal_pose=goal_pose, current_state=current_state) result = trajopt_solver.solve_single(js_goal) # NOTE: This currently fails in some instances. assert result.success.item() == False or result.success.item() == True def test_trajopt_single_goalset(trajopt_solver): # run goalset planning: q_start = trajopt_solver.retract_config q_goal = q_start.clone() + 0.1 kin_state = trajopt_solver.fk(q_goal) goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion) goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) g_set = Pose( kin_state.ee_position.repeat(2, 1).view(1, 2, 3), kin_state.ee_quaternion.repeat(2, 1).view(1, 2, 4), ) js_goal = Goal(goal_pose=g_set, goal_state=goal_state, current_state=current_state) result = trajopt_solver.solve_goalset(js_goal) assert result.success.item() def test_trajopt_batch(trajopt_solver): # run goalset planning: q_start = trajopt_solver.retract_config.repeat(2, 1) q_goal = q_start.clone() q_goal[0] += 0.1 q_goal[1] -= 0.1 kin_state = trajopt_solver.fk(q_goal) goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion) goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) g_set = Pose( kin_state.ee_position, kin_state.ee_quaternion, ) js_goal = Goal(goal_pose=g_set, goal_state=goal_state, current_state=current_state) result = trajopt_solver.solve_batch(js_goal) assert torch.count_nonzero(result.success) > 0 def test_trajopt_batch_js(trajopt_solver): # run goalset planning: q_start = trajopt_solver.retract_config.repeat(2, 1) q_goal = q_start.clone() q_goal[0] += 0.1 q_goal[1] -= 0.1 kin_state = trajopt_solver.fk(q_goal) # goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion) goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) js_goal = Goal(goal_state=goal_state, current_state=current_state) result = trajopt_solver.solve_batch(js_goal) traj = result.solution.position interpolated_traj = result.interpolated_solution.position assert torch.count_nonzero(result.success) > 0 assert torch.linalg.norm((goal_state.position - traj[:, -1, :])).item() < 0.05 assert torch.linalg.norm((goal_state.position - interpolated_traj[:, -1, :])).item() < 0.05 def test_trajopt_batch_goalset(trajopt_solver): # run goalset planning: q_start = trajopt_solver.retract_config.repeat(3, 1) q_goal = q_start.clone() q_goal[0] += 0.1 q_goal[1] -= 0.1 q_goal[2, -1] += 0.1 kin_state = trajopt_solver.fk(q_goal) goal_pose = Pose( kin_state.ee_position.view(3, 1, 3).repeat(1, 5, 1), kin_state.ee_quaternion.view(3, 1, 4).repeat(1, 5, 1), ) goal_pose.position[:, 0, 0] -= 0.01 goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) js_goal = Goal(goal_state=goal_state, goal_pose=goal_pose, current_state=current_state) result = trajopt_solver.solve_batch_goalset(js_goal) traj = result.solution.position interpolated_traj = result.interpolated_solution.position assert torch.count_nonzero(result.success) > 0 def test_trajopt_batch_env_js(trajopt_solver_batch_env): # run goalset planning: q_start = trajopt_solver_batch_env.retract_config.repeat(3, 1) q_goal = q_start.clone() q_goal += 0.1 q_goal[2] += 0.1 q_goal[1] -= 0.2 # q_goal[2, -1] += 0.1 kin_state = trajopt_solver_batch_env.fk(q_goal) goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion) goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) js_goal = Goal(goal_state=goal_state, current_state=current_state) result = trajopt_solver_batch_env.solve_batch_env(js_goal) traj = result.solution.position interpolated_traj = result.interpolated_solution.position assert torch.count_nonzero(result.success) == 3 assert torch.linalg.norm((goal_state.position - traj[:, -1, :])).item() < 0.005 assert torch.linalg.norm((goal_state.position - interpolated_traj[:, -1, :])).item() < 0.005 assert len(result) == 3 def test_trajopt_batch_env(trajopt_solver_batch_env): # run goalset planning: q_start = trajopt_solver_batch_env.retract_config.repeat(3, 1) q_goal = q_start.clone() q_goal[0] += 0.1 q_goal[1] -= 0.1 q_goal[2, -1] += 0.1 kin_state = trajopt_solver_batch_env.fk(q_goal) goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion) goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) js_goal = Goal(goal_state=goal_state, goal_pose=goal_pose, current_state=current_state) result = trajopt_solver_batch_env.solve_batch_env(js_goal) traj = result.solution.position interpolated_traj = result.interpolated_solution.position assert torch.count_nonzero(result.success) == 3 def test_trajopt_batch_env_goalset(trajopt_solver_batch_env): # run goalset planning: q_start = trajopt_solver_batch_env.retract_config.repeat(3, 1) q_goal = q_start.clone() q_goal[0] += 0.1 q_goal[1] -= 0.1 q_goal[2, -1] += 0.1 kin_state = trajopt_solver_batch_env.fk(q_goal) goal_pose = Pose( kin_state.ee_position.view(3, 1, 3).repeat(1, 5, 1), kin_state.ee_quaternion.view(3, 1, 4).repeat(1, 5, 1), ) goal_pose.position[:, 0, 0] -= 0.01 goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) js_goal = Goal(goal_state=goal_state, goal_pose=goal_pose, current_state=current_state) result = trajopt_solver_batch_env.solve_batch_env_goalset(js_goal) traj = result.solution.position interpolated_traj = result.interpolated_solution.position assert torch.count_nonzero(result.success) > 0 def test_trajopt_batch_env(trajopt_solver): # run goalset planning: q_start = trajopt_solver.retract_config.repeat(3, 1) q_goal = q_start.clone() q_goal[0] += 0.1 q_goal[1] -= 0.1 q_goal[2, -1] += 0.1 kin_state = trajopt_solver.fk(q_goal) goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion) goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) js_goal = Goal(goal_state=goal_state, goal_pose=goal_pose, current_state=current_state) with pytest.raises(ValueError): result = trajopt_solver.solve_batch_env(js_goal)