# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # """ This example shows how to use cuRobo's kinematics to generate a mask. """ # Standard Library import time # Third Party import imageio import numpy as np import torch import torch.autograd.profiler as profiler from nvblox_torch.datasets.mesh_dataset import MeshDataset from torch.profiler import ProfilerActivity, profile, record_function # CuRobo from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel from curobo.geom.types import PointCloud, WorldConfig from curobo.types.base import TensorDeviceType from curobo.types.camera import CameraObservation from curobo.types.math import Pose from curobo.types.robot import RobotConfig from curobo.types.state import JointState from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml from curobo.wrap.model.robot_segmenter import RobotSegmenter torch.manual_seed(30) torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True def create_render_dataset( robot_file, save_debug_data: bool = False, fov_deg: float = 60, n_frames: int = 20, retract_delta: float = 0.0, ): # load robot: robot_dict = load_yaml(join_path(get_robot_configs_path(), robot_file)) robot_dict["robot_cfg"]["kinematics"]["load_link_names_with_mesh"] = True robot_dict["robot_cfg"]["kinematics"]["load_meshes"] = True robot_cfg = RobotConfig.from_dict(robot_dict["robot_cfg"]) kin_model = CudaRobotModel(robot_cfg.kinematics) q = kin_model.retract_config q += retract_delta meshes = kin_model.get_robot_as_mesh(q) world = WorldConfig(mesh=meshes[:]) world_table = WorldConfig.from_dict( load_yaml(join_path(get_world_configs_path(), "collision_test.yml")) ) world_table.cuboid[0].dims = [0.5, 0.5, 0.1] world.add_obstacle(world_table.objects[0]) world.add_obstacle(world_table.objects[1]) if save_debug_data: world.save_world_as_mesh("scene.stl", process_color=False) robot_mesh = ( WorldConfig.create_merged_mesh_world(world, process_color=False).mesh[0].get_trimesh_mesh() ) mesh_dataset = MeshDataset( None, n_frames=n_frames, image_size=640, save_data_dir=None, trimesh_mesh=robot_mesh, fov_deg=fov_deg, ) q_js = JointState(position=q, joint_names=kin_model.joint_names) return mesh_dataset, q_js def mask_image(robot_file="ur5e.yml"): save_debug_data = False write_pointcloud = False # create robot segmenter: tensor_args = TensorDeviceType() curobo_segmenter = RobotSegmenter.from_robot_file( robot_file, collision_sphere_buffer=0.01, distance_threshold=0.05, use_cuda_graph=True ) mesh_dataset, q_js = create_render_dataset(robot_file, write_pointcloud, n_frames=20) if save_debug_data: visualize_scale = 10.0 data = mesh_dataset[0] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) # save depth image imageio.imwrite( "camera_depth.png", (cam_obs.depth_image * visualize_scale) .squeeze() .detach() .cpu() .numpy() .astype(np.uint16), ) # save robot spheres in current joint configuration robot_kinematics = curobo_segmenter._robot_world.kinematics if write_pointcloud: sph = robot_kinematics.get_robot_as_spheres(q_js.position) WorldConfig(sphere=sph[0]).save_world_as_mesh("robot_spheres.stl") # save world pointcloud in robot origin pc = cam_obs.get_pointcloud() pc_obs = PointCloud("world", pose=cam_obs.pose.to_list(), points=pc) pc_obs.save_as_mesh("camera_pointcloud.stl", transform_with_pose=True) # run segmentation: depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js( cam_obs, q_js, ) # save robot points as mesh robot_mask = cam_obs.clone() robot_mask.depth_image[~depth_mask] = 0.0 if write_pointcloud: robot_mesh = PointCloud( "world", pose=robot_mask.pose.to_list(), points=robot_mask.get_pointcloud() ) robot_mesh.save_as_mesh("robot_segmented.stl", transform_with_pose=True) # save depth image imageio.imwrite( "robot_depth.png", (robot_mask.depth_image * visualize_scale) .detach() .squeeze() .cpu() .numpy() .astype(np.uint16), ) # save world points as mesh world_mask = cam_obs.clone() world_mask.depth_image[depth_mask] = 0.0 if write_pointcloud: world_mesh = PointCloud( "world", pose=world_mask.pose.to_list(), points=world_mask.get_pointcloud() ) world_mesh.save_as_mesh("world_segmented.stl", transform_with_pose=True) imageio.imwrite( "world_depth.png", (world_mask.depth_image * visualize_scale) .detach() .squeeze() .cpu() .numpy() .astype(np.uint16), ) dt_list = [] for i in range(len(mesh_dataset)): data = mesh_dataset[i] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) if not curobo_segmenter.ready: curobo_segmenter.update_camera_projection(cam_obs) st_time = time.time() depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js( cam_obs, q_js, ) torch.cuda.synchronize() dt_list.append(time.time() - st_time) print("Segmentation Time (ms), (hz)", np.mean(dt_list[5:]) * 1000.0, 1.0 / np.mean(dt_list[5:])) def batch_mask_image(robot_file="ur5e.yml"): """Mask images from different camera views using batched query. Note: This only works for a single joint configuration across camera views. Args: robot_file: robot to use for example. """ save_debug_data = True # create robot segmenter: tensor_args = TensorDeviceType() curobo_segmenter = RobotSegmenter.from_robot_file( robot_file, collision_sphere_buffer=0.01, distance_threshold=0.05, use_cuda_graph=True ) mesh_dataset, q_js = create_render_dataset(robot_file, save_debug_data, fov_deg=60) mesh_dataset_zoom, q_js = create_render_dataset( robot_file, save_debug_data, fov_deg=40, n_frames=30 ) if save_debug_data: visualize_scale = 10.0 data = mesh_dataset[0] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) data_zoom = mesh_dataset_zoom[1] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) cam_obs_zoom = CameraObservation( depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000, intrinsics=data_zoom["intrinsics"], pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)), ) cam_obs = cam_obs.stack(cam_obs_zoom) for i in range(cam_obs.depth_image.shape[0]): # save depth image imageio.imwrite( "camera_depth_" + str(i) + ".png", (cam_obs.depth_image[i] * visualize_scale) .squeeze() .detach() .cpu() .numpy() .astype(np.uint16), ) # run segmentation: depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js( cam_obs, q_js, ) # save robot points as mesh robot_mask = cam_obs.clone() robot_mask.depth_image[~depth_mask] = 0.0 for i in range(cam_obs.depth_image.shape[0]): # save depth image imageio.imwrite( "robot_depth_" + str(i) + ".png", (robot_mask.depth_image[i] * visualize_scale) .detach() .squeeze() .cpu() .numpy() .astype(np.uint16), ) # save world points as mesh imageio.imwrite( "world_depth_" + str(i) + ".png", (filtered_image[i] * visualize_scale) .detach() .squeeze() .cpu() .numpy() .astype(np.uint16), ) dt_list = [] for i in range(len(mesh_dataset)): data = mesh_dataset[i] data_zoom = mesh_dataset_zoom[i + 1] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) cam_obs_zoom = CameraObservation( depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000, intrinsics=data_zoom["intrinsics"], pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)), ) cam_obs = cam_obs.stack(cam_obs_zoom) if not curobo_segmenter.ready: curobo_segmenter.update_camera_projection(cam_obs) st_time = time.time() depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js( cam_obs, q_js, ) torch.cuda.synchronize() dt_list.append(time.time() - st_time) print("Segmentation Time (ms), (hz)", np.mean(dt_list[5:]) * 1000.0, 1.0 / np.mean(dt_list[5:])) def batch_robot_mask_image(robot_file="ur5e.yml"): """Mask images from different camera views using batched query. Note: This example treats each image to have different robot joint configuration Args: robot_file: robot to use for example. """ save_debug_data = True # create robot segmenter: tensor_args = TensorDeviceType() curobo_segmenter = RobotSegmenter.from_robot_file( robot_file, collision_sphere_buffer=0.01, distance_threshold=0.05, use_cuda_graph=True ) mesh_dataset, q_js = create_render_dataset(robot_file, save_debug_data, fov_deg=60) mesh_dataset_zoom, q_js_zoom = create_render_dataset( robot_file, save_debug_data, fov_deg=60, retract_delta=-0.5 ) q_js = q_js.unsqueeze(0) q_js = q_js.stack(q_js_zoom.unsqueeze(0)) if save_debug_data: visualize_scale = 10.0 data = mesh_dataset[0] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) data_zoom = mesh_dataset_zoom[0] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) cam_obs_zoom = CameraObservation( depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000, intrinsics=data_zoom["intrinsics"], pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)), ) cam_obs = cam_obs.stack(cam_obs_zoom) for i in range(cam_obs.depth_image.shape[0]): # save depth image imageio.imwrite( "camera_depth_" + str(i) + ".png", (cam_obs.depth_image[i] * visualize_scale) .squeeze() .detach() .cpu() .numpy() .astype(np.uint16), ) # run segmentation: depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js( cam_obs, q_js, ) # save robot points as mesh robot_mask = cam_obs.clone() robot_mask.depth_image[~depth_mask] = 0.0 for i in range(cam_obs.depth_image.shape[0]): # save depth image imageio.imwrite( "robot_depth_" + str(i) + ".png", (robot_mask.depth_image[i] * visualize_scale) .detach() .squeeze() .cpu() .numpy() .astype(np.uint16), ) # save world points as mesh imageio.imwrite( "world_depth_" + str(i) + ".png", (filtered_image[i] * visualize_scale) .detach() .squeeze() .cpu() .numpy() .astype(np.uint16), ) dt_list = [] for i in range(len(mesh_dataset)): data = mesh_dataset[i] data_zoom = mesh_dataset_zoom[i] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) cam_obs_zoom = CameraObservation( depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000, intrinsics=data_zoom["intrinsics"], pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)), ) cam_obs = cam_obs.stack(cam_obs_zoom) if not curobo_segmenter.ready: curobo_segmenter.update_camera_projection(cam_obs) st_time = time.time() depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js( cam_obs, q_js, ) torch.cuda.synchronize() dt_list.append(time.time() - st_time) print("Segmentation Time (ms), (hz)", np.mean(dt_list[5:]) * 1000.0, 1.0 / np.mean(dt_list[5:])) def profile_mask_image(robot_file="ur5e.yml"): # create robot segmenter: tensor_args = TensorDeviceType() curobo_segmenter = RobotSegmenter.from_robot_file( robot_file, collision_sphere_buffer=0.0, distance_threshold=0.05, use_cuda_graph=False ) mesh_dataset, q_js = create_render_dataset(robot_file) dt_list = [] data = mesh_dataset[0] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) if not curobo_segmenter.ready: curobo_segmenter.update_camera_projection(cam_obs) depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(cam_obs, q_js) with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof: for i in range(len(mesh_dataset)): with profiler.record_function("get_data"): data = mesh_dataset[i] cam_obs = CameraObservation( depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000, intrinsics=data["intrinsics"], pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)), ) st_time = time.time() with profiler.record_function("segmentation"): depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js( cam_obs, q_js ) print("Exporting the trace..") prof.export_chrome_trace("segmentation.json") if __name__ == "__main__": mask_image() # profile_mask_image() # batch_mask_image() # batch_robot_mask_image()