# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # CuRobo from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel, CudaRobotModelConfig from curobo.cuda_robot_model.util import load_robot_yaml from curobo.types.file_path import ContentPath from curobo.types.math import Pose from curobo.types.robot import JointState from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig def test_xrdf_kinematics(): robot_file = "ur10e.xrdf" urdf_file = "robot/ur_description/ur10e.urdf" content_path = ContentPath(robot_xrdf_file=robot_file, robot_urdf_file=urdf_file) robot_data = load_robot_yaml(content_path) robot_data["robot_cfg"]["kinematics"]["ee_link"] = "wrist_3_link" cfg = CudaRobotModelConfig.from_data_dict(robot_data["robot_cfg"]["kinematics"]) robot = CudaRobotModel(cfg) q_test = robot.tensor_args.to_device([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).view(1, -1) kin_pose = robot.get_state(q_test) expected_position = robot.tensor_args.to_device([1.1842, 0.2907, 0.0609]).view(1, -1) error = kin_pose.ee_pose.position - expected_position assert error.norm() < 0.01 assert "link_names" not in robot_data["robot_cfg"]["kinematics"] def test_xrdf_motion_gen(): robot_file = "ur10e.xrdf" urdf_file = "robot/ur_description/ur10e.urdf" content_path = ContentPath(robot_xrdf_file=robot_file, robot_urdf_file=urdf_file) robot_data = load_robot_yaml(content_path) robot_data["robot_cfg"]["kinematics"]["ee_link"] = "wrist_3_link" motion_gen_config = MotionGenConfig.load_from_robot_config( robot_data, "collision_table.yml", use_cuda_graph=True, ee_link_name="tool0", ) motion_gen = MotionGen(motion_gen_config) motion_gen.warmup(warmup_js_trajopt=False) retract_cfg = motion_gen.get_retract_config() state = motion_gen.rollout_fn.compute_kinematics( JointState.from_position(retract_cfg.view(1, -1)) ) retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) result = motion_gen.plan_single(start_state, retract_pose) assert result.success.item()