# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # Third Party import pytest import torch # CuRobo from curobo.geom.sdf.world import ( CollisionCheckerType, WorldCollisionConfig, WorldPrimitiveCollision, ) from curobo.geom.sdf.world_mesh import WorldMeshCollision from curobo.geom.types import WorldConfig from curobo.types.base import TensorDeviceType from curobo.types.math import Pose from curobo.types.robot import RobotConfig from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig def ik_base_config(): tensor_args = TensorDeviceType() world_file = "collision_cubby.yml" robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) ik_config = IKSolverConfig.load_from_robot_config( robot_cfg, world_cfg, rotation_threshold=0.05, position_threshold=0.005, num_seeds=100, self_collision_check=True, self_collision_opt=True, tensor_args=tensor_args, use_cuda_graph=False, n_collision_envs=1, collision_cache={"obb": 10}, ) return ik_config def ik_gd_config(): tensor_args = TensorDeviceType() world_file = "collision_cubby.yml" robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) ik_config = IKSolverConfig.load_from_robot_config( robot_cfg, world_cfg, rotation_threshold=0.05, position_threshold=0.005, num_seeds=100, self_collision_check=True, self_collision_opt=True, tensor_args=tensor_args, use_cuda_graph=False, use_gradient_descent=True, grad_iters=100, ) return ik_config def ik_es_config(): tensor_args = TensorDeviceType() world_file = "collision_cubby.yml" robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) ik_config = IKSolverConfig.load_from_robot_config( robot_cfg, world_cfg, rotation_threshold=0.05, position_threshold=0.005, num_seeds=100, self_collision_check=True, self_collision_opt=True, tensor_args=tensor_args, use_cuda_graph=False, use_es=True, es_learning_rate=0.01, use_fixed_samples=True, ) return ik_config def ik_no_particle_opt_config(): tensor_args = TensorDeviceType() world_file = "collision_cubby.yml" robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) ik_config = IKSolverConfig.load_from_robot_config( robot_cfg, world_cfg, rotation_threshold=0.05, position_threshold=0.005, num_seeds=100, self_collision_check=True, self_collision_opt=True, tensor_args=tensor_args, use_cuda_graph=False, use_particle_opt=False, grad_iters=100, ) return ik_config @pytest.mark.parametrize( "config, expected", [ (ik_base_config(), True), (ik_es_config(), True), (ik_gd_config(), -100), # unstable (ik_no_particle_opt_config(), True), ], ) def test_eval(config, expected): ik_solver = IKSolver(config) q_sample = ik_solver.sample_configs(1) kin_state = ik_solver.fk(q_sample) goal = Pose(kin_state.ee_position, kin_state.ee_quaternion) result = ik_solver.solve_single(goal) result = ik_solver.solve_single(goal) success = result.success if expected != -100: assert success.item() == expected