# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # Third Party import torch a = torch.zeros(4, device="cuda:0") # Standard Library import argparse # CuRobo from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel # from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig from curobo.geom.sdf.world import CollisionCheckerType from curobo.geom.types import WorldConfig from curobo.types.base import TensorDeviceType from curobo.types.math import Pose from curobo.types.robot import JointState, RobotConfig from curobo.types.state import JointState from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig parser = argparse.ArgumentParser() parser.add_argument( "--headless", action="store_true", help="When True, enables headless mode", default=False ) parser.add_argument( "--visualize_spheres", action="store_true", help="When True, visualizes robot spheres", default=False, ) parser.add_argument("--robot", type=str, default="franka.yml", help="robot configuration to load") args = parser.parse_args() ############################################################ # Third Party from omni.isaac.kit import SimulationApp simulation_app = SimulationApp( { "headless": args.headless, "width": "1920", "height": "1080", } ) # Third Party from omni.isaac.core.utils.extensions import enable_extension # CuRobo from curobo.util_file import ( get_assets_path, get_filename, get_path_of_dir, get_robot_configs_path, join_path, load_yaml, ) ext_list = [ "omni.kit.asset_converter", # "omni.kit.livestream.native", "omni.kit.tool.asset_importer", "omni.isaac.asset_browser", ] [enable_extension(x) for x in ext_list] # simulation_app.update() # Standard Library from typing import Dict # Third Party import carb import numpy as np from helper import add_robot_to_scene from omni.isaac.core import World from omni.isaac.core.objects import cuboid, sphere from omni.isaac.core.robots import Robot ########### OV ################# from omni.isaac.core.utils.extensions import enable_extension from omni.isaac.core.utils.types import ArticulationAction # CuRobo from curobo.util.logger import setup_curobo_logger from curobo.util.usd_helper import UsdHelper ############################################################ ########### OV #################;;;;; def main(): # assuming obstacles are in objects_path: my_world = World(stage_units_in_meters=1.0) stage = my_world.stage xform = stage.DefinePrim("/World", "Xform") stage.SetDefaultPrim(xform) stage.DefinePrim("/curobo", "Xform") # my_world.stage.SetDefaultPrim(my_world.stage.GetPrimAtPath("/World")) stage = my_world.stage # stage.SetDefaultPrim(stage.GetPrimAtPath("/World")) # Make a target to follow target = cuboid.VisualCuboid( "/World/target", position=np.array([0.5, 0, 0.5]), orientation=np.array([0, 1, 0, 0]), color=np.array([1.0, 0, 0]), size=0.05, ) setup_curobo_logger("warn") past_pose = None n_obstacle_cuboids = 30 n_obstacle_mesh = 10 # warmup curobo instance usd_help = UsdHelper() target_pose = None tensor_args = TensorDeviceType() robot_cfg = load_yaml(join_path(get_robot_configs_path(), args.robot))["robot_cfg"] j_names = robot_cfg["kinematics"]["cspace"]["joint_names"] default_config = robot_cfg["kinematics"]["cspace"]["retract_config"] robot, robot_prim_path = add_robot_to_scene(robot_cfg, my_world) articulation_controller = robot.get_articulation_controller() world_cfg_table = WorldConfig.from_dict( load_yaml(join_path(get_world_configs_path(), "collision_table.yml")) ) world_cfg_table.cuboid[0].pose[2] -= 0.04 world_cfg1 = WorldConfig.from_dict( load_yaml(join_path(get_world_configs_path(), "collision_table.yml")) ).get_mesh_world() world_cfg1.mesh[0].name += "_mesh" world_cfg1.mesh[0].pose[2] = -10.5 world_cfg = WorldConfig(cuboid=world_cfg_table.cuboid, mesh=world_cfg1.mesh) motion_gen_config = MotionGenConfig.load_from_robot_config( robot_cfg, world_cfg, tensor_args, trajopt_tsteps=32, collision_checker_type=CollisionCheckerType.MESH, use_cuda_graph=True, num_trajopt_seeds=12, num_graph_seeds=12, interpolation_dt=0.03, collision_cache={"obb": n_obstacle_cuboids, "mesh": n_obstacle_mesh}, collision_activation_distance=0.025, acceleration_scale=1.0, self_collision_check=True, maximum_trajectory_dt=0.25, fixed_iters_trajopt=True, finetune_dt_scale=1.05, velocity_scale=[0.25, 1, 1, 1, 1.0, 1.0, 1.0, 1.0, 1.0], ) motion_gen = MotionGen(motion_gen_config) print("warming up...") motion_gen.warmup(enable_graph=False, warmup_js_trajopt=False) print("Curobo is Ready") plan_config = MotionGenPlanConfig( enable_graph=False, enable_graph_attempt=4, max_attempts=2, enable_finetune_trajopt=True ) usd_help.load_stage(my_world.stage) usd_help.add_world_to_stage(world_cfg, base_frame="/World") cmd_plan = None cmd_idx = 0 my_world.scene.add_default_ground_plane() i = 0 spheres = None while simulation_app.is_running(): my_world.step(render=True) if not my_world.is_playing(): if i % 100 == 0: print("**** Click Play to start simulation *****") i += 1 # if step_index == 0: # my_world.play() continue step_index = my_world.current_time_step_index # print(step_index) if step_index < 2: my_world.reset() robot._articulation_view.initialize() idx_list = [robot.get_dof_index(x) for x in j_names] robot.set_joint_positions(default_config, idx_list) robot._articulation_view.set_max_efforts( values=np.array([5000 for i in range(len(idx_list))]), joint_indices=idx_list ) if step_index < 20: continue if step_index == 50 or step_index % 1000 == 0.0: print("Updating world, reading w.r.t.", robot_prim_path) obstacles = usd_help.get_obstacles_from_stage( # only_paths=[obstacles_path], reference_prim_path=robot_prim_path, ignore_substring=[ robot_prim_path, "/World/target", "/World/defaultGroundPlane", "/curobo", ], ).get_collision_check_world() motion_gen.update_world(obstacles) print("Updated World") carb.log_info("Synced CuRobo world from stage.") # position and orientation of target virtual cube: cube_position, cube_orientation = target.get_world_pose() if past_pose is None: past_pose = cube_position if target_pose is None: target_pose = cube_position sim_js = robot.get_joints_state() sim_js_names = robot.dof_names cu_js = JointState( position=tensor_args.to_device(sim_js.positions), velocity=tensor_args.to_device(sim_js.velocities) * 0.0, acceleration=tensor_args.to_device(sim_js.velocities) * 0.0, jerk=tensor_args.to_device(sim_js.velocities) * 0.0, joint_names=sim_js_names, ) cu_js = cu_js.get_ordered_joint_state(motion_gen.kinematics.joint_names) if args.visualize_spheres and step_index % 2 == 0: sph_list = motion_gen.kinematics.get_robot_as_spheres(cu_js.position) if spheres is None: spheres = [] # create spheres: for si, s in enumerate(sph_list[0]): sp = sphere.VisualSphere( prim_path="/curobo/robot_sphere_" + str(si), position=np.ravel(s.position), radius=float(s.radius), color=np.array([0, 0.8, 0.2]), ) spheres.append(sp) else: for si, s in enumerate(sph_list[0]): spheres[si].set_world_pose(position=np.ravel(s.position)) spheres[si].set_radius(float(s.radius)) if ( np.linalg.norm(cube_position - target_pose) > 1e-3 and np.linalg.norm(past_pose - cube_position) == 0.0 and np.linalg.norm(sim_js.velocities) < 0.2 ): # Set EE teleop goals, use cube for simple non-vr init: ee_translation_goal = cube_position ee_orientation_teleop_goal = cube_orientation # compute curobo solution: ik_goal = Pose( position=tensor_args.to_device(ee_translation_goal), quaternion=tensor_args.to_device(ee_orientation_teleop_goal), ) result = motion_gen.plan_single(cu_js.unsqueeze(0), ik_goal, plan_config) # ik_result = ik_solver.solve_single(ik_goal, cu_js.position.view(1,-1), cu_js.position.view(1,1,-1)) succ = result.success.item() # ik_result.success.item() if succ: cmd_plan = result.get_interpolated_plan() cmd_plan = motion_gen.get_full_js(cmd_plan) # get only joint names that are in both: idx_list = [] common_js_names = [] for x in sim_js_names: if x in cmd_plan.joint_names: idx_list.append(robot.get_dof_index(x)) common_js_names.append(x) # idx_list = [robot.get_dof_index(x) for x in sim_js_names] cmd_plan = cmd_plan.get_ordered_joint_state(common_js_names) cmd_idx = 0 else: carb.log_warn("Plan did not converge to a solution. No action is being taken.") target_pose = cube_position past_pose = cube_position if cmd_plan is not None: cmd_state = cmd_plan[cmd_idx] # get full dof state art_action = ArticulationAction( cmd_state.position.cpu().numpy(), cmd_state.velocity.cpu().numpy(), joint_indices=idx_list, ) # set desired joint angles obtained from IK: articulation_controller.apply_action(art_action) cmd_idx += 1 for _ in range(2): my_world.step(render=False) if cmd_idx >= len(cmd_plan.position): cmd_idx = 0 cmd_plan = None simulation_app.close() if __name__ == "__main__": main()