# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # Standard Library import argparse import time from typing import Any, Dict, List # Third Party import numpy as np import torch # from geometrout.primitive import Cuboid, Cylinder # from geometrout.transform import SE3 # from robometrics.robot import CollisionSphereConfig, Robot from torch.profiler import ProfilerActivity, profile, record_function from tqdm import tqdm # CuRobo from curobo.geom.sdf.world import CollisionCheckerType, WorldConfig from curobo.geom.types import Mesh from curobo.types.math import Pose from curobo.types.state import JointState from curobo.util.logger import setup_curobo_logger from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig # torch.set_num_threads(8) # ttorch.use_deterministic_algorithms(True) torch.manual_seed(0) torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True np.random.seed(10) # Third Party from robometrics.datasets import demo_raw def load_curobo( n_cubes: int, enable_log: bool = False, mesh_mode: bool = False, cuda_graph: bool = False ): robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"] robot_cfg["kinematics"]["collision_sphere_buffer"] = -0.015 world_cfg = WorldConfig.from_dict( load_yaml(join_path(get_world_configs_path(), "collision_table.yml")) ).get_obb_world() c_checker = CollisionCheckerType.PRIMITIVE c_cache = {"obb": n_cubes} if mesh_mode: c_checker = CollisionCheckerType.MESH c_cache = {"mesh": n_cubes} world_cfg = world_cfg.get_mesh_world() motion_gen_config = MotionGenConfig.load_from_robot_config( robot_cfg, world_cfg, trajopt_tsteps=32, collision_checker_type=c_checker, use_cuda_graph=cuda_graph, collision_cache=c_cache, ee_link_name="panda_hand", position_threshold=0.005, rotation_threshold=0.05, num_ik_seeds=30, num_trajopt_seeds=10, interpolation_dt=0.02, # grad_trajopt_iters=200, store_ik_debug=enable_log, store_trajopt_debug=enable_log, ) mg = MotionGen(motion_gen_config) mg.warmup(enable_graph=False) return mg def benchmark_mb(args): robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"] spheres = robot_cfg["kinematics"]["collision_spheres"] if isinstance(spheres, str): spheres = load_yaml(join_path(get_robot_configs_path(), spheres))["collision_spheres"] plan_config = MotionGenPlanConfig( max_attempts=2, enable_graph_attempt=3, enable_finetune_trajopt=True, partial_ik_opt=False, enable_graph=False, ) # load dataset: file_paths = [demo_raw] all_files = [] for file_path in file_paths: all_groups = [] problems = file_path() for key, v in tqdm(problems.items()): # if key not in ["table_under_pick_panda"]: # continue scene_problems = problems[key] # [:2] n_cubes = check_problems(scene_problems) mg = load_curobo(n_cubes, False, args.mesh, args.cuda_graph) m_list = [] i = 0 for problem in tqdm(scene_problems, leave=False): q_start = problem["start"] pose = ( problem["goal_pose"]["position_xyz"] + problem["goal_pose"]["quaternion_wxyz"] ) # reset planner mg.reset(reset_seed=False) if args.mesh: world = WorldConfig.from_dict(problem["obstacles"]).get_mesh_world() else: world = WorldConfig.from_dict(problem["obstacles"]).get_obb_world() mg.update_world(world) # continue # load obstacles # run planner start_state = JointState.from_position(mg.tensor_args.to_device([q_start])) with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof: result = mg.plan_single( start_state, Pose.from_list(pose), plan_config, ) print("Exporting the trace..") prof.export_chrome_trace(join_path(args.save_path, args.file_name) + ".json") print(result.success, result.status) exit() def check_problems(all_problems): n_cube = 0 for problem in all_problems: cache = WorldConfig.from_dict(problem["obstacles"]).get_obb_world().get_cache_dict() n_cube = max(n_cube, cache["obb"]) return n_cube if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--save_path", type=str, default="log/trace", help="path to save file", ) parser.add_argument( "--file_name", type=str, default="motion_gen_trace", help="File name prefix to use to save benchmark results", ) parser.add_argument( "--mesh", action="store_true", help="When True, converts obstacles to meshes", default=False, ) parser.add_argument( "--cuda_graph", action="store_true", help="When True, uses cuda graph during profiing", default=False, ) args = parser.parse_args() setup_curobo_logger("error") benchmark_mb(args)