# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # Third Party import pytest import torch # CuRobo from curobo.types.base import TensorDeviceType from curobo.types.math import Pose from curobo.types.robot import JointState from curobo.wrap.reacher.motion_gen import ( MotionGen, MotionGenConfig, MotionGenPlanConfig, MotionGenStatus, PoseCostMetric, ) @pytest.fixture(scope="function") def motion_gen(request): tensor_args = TensorDeviceType() world_file = "collision_table.yml" robot_file = "franka.yml" motion_gen_config = MotionGenConfig.load_from_robot_config( robot_file, world_file, tensor_args, use_cuda_graph=True, project_pose_to_goal_frame=request.param[0], ) motion_gen_instance = MotionGen(motion_gen_config) motion_gen_instance.warmup( enable_graph=False, warmup_js_trajopt=False, n_goalset=request.param[1] ) return motion_gen_instance @pytest.mark.parametrize( "motion_gen", [ ([True, -1]), ([False, -1]), ([True, 10]), ([False, 10]), ], indirect=True, ) def test_approach_grasp_pose(motion_gen): # run full pose planning retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = state.ee_pose.clone() goal_pose.position[0, 0] -= 0.1 start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) m_config = MotionGenPlanConfig(max_attempts=1) result = motion_gen.plan_single(start_state, goal_pose, m_config.clone()) assert torch.count_nonzero(result.success) == 1 # run grasp pose planning: m_config.pose_cost_metric = PoseCostMetric.create_grasp_approach_metric() result = motion_gen.plan_single(start_state, goal_pose, m_config.clone()) assert torch.count_nonzero(result.success) == 1 @pytest.mark.parametrize( "motion_gen", [ ([True, -1]), ([False, -1]), ([True, 10]), ([False, 10]), ], indirect=True, ) def test_reach_only_position(motion_gen): retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = state.ee_pose.clone() goal_pose.position[0, 0] -= 0.1 start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) m_config = MotionGenPlanConfig( max_attempts=1, pose_cost_metric=PoseCostMetric( reach_partial_pose=True, reach_vec_weight=motion_gen.tensor_args.to_device([0, 0, 0, 1, 1, 1]), ), ) result = motion_gen.plan_single(start_state, goal_pose, m_config.clone()) assert result.status != MotionGenStatus.INVALID_PARTIAL_POSE_COST_METRIC assert torch.count_nonzero(result.success) == 1 reached_state = result.optimized_plan[-1] reached_pose = motion_gen.compute_kinematics(reached_state).ee_pose.clone() assert goal_pose.angular_distance(reached_pose) > 0.0 assert goal_pose.linear_distance(reached_pose) <= 0.005 @pytest.mark.parametrize( "motion_gen", [ ([True, -1]), ([False, -1]), ([True, 10]), ([False, 10]), ], indirect=True, ) def test_reach_only_orientation(motion_gen): retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = state.ee_pose.clone() goal_pose.position[0, 0] -= 0.1 start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) m_config = MotionGenPlanConfig( max_attempts=1, pose_cost_metric=PoseCostMetric( reach_partial_pose=True, reach_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 0, 0, 0]), ), ) result = motion_gen.plan_single(start_state, goal_pose, m_config.clone()) assert torch.count_nonzero(result.success) == 1 reached_state = result.optimized_plan[-1] reached_pose = motion_gen.compute_kinematics(reached_state).ee_pose.clone() assert goal_pose.linear_distance(reached_pose) > 0.0 assert goal_pose.angular_distance(reached_pose) < 0.05 @pytest.mark.parametrize( "motion_gen", [ ([True, -1]), ([False, -1]), ([True, 10]), ([False, 10]), ], indirect=True, ) def test_hold_orientation(motion_gen): retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = state.ee_pose.clone() goal_pose.position[0, 0] -= 0.1 start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone() goal_pose.quaternion = start_pose.quaternion.clone() m_config = MotionGenPlanConfig( max_attempts=1, pose_cost_metric=PoseCostMetric( hold_partial_pose=True, hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 0, 0, 0]), ), ) result = motion_gen.plan_single(start_state, goal_pose, m_config.clone()) assert torch.count_nonzero(result.success) == 1 traj_pose = motion_gen.compute_kinematics(result.optimized_plan).ee_pose.clone() # assert goal_pose.linear_distance(traj_pose) > 0.0 goal_pose = goal_pose.repeat(traj_pose.shape[0]) assert torch.max(goal_pose.angular_distance(traj_pose)) < 0.05 @pytest.mark.parametrize( "motion_gen", [ ([True, -1]), ([False, -1]), ([True, 10]), ([False, 10]), ], indirect=True, ) def test_hold_position(motion_gen): retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = state.ee_pose.clone() goal_pose.position[0, 0] -= 0.1 start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone() goal_pose.position = start_pose.position.clone() m_config = MotionGenPlanConfig( max_attempts=1, pose_cost_metric=PoseCostMetric( hold_partial_pose=True, hold_vec_weight=motion_gen.tensor_args.to_device([0, 0, 0, 1, 1, 1]), ), ) result = motion_gen.plan_single(start_state, goal_pose, m_config.clone()) assert torch.count_nonzero(result.success) == 1 traj_pose = motion_gen.compute_kinematics(result.optimized_plan).ee_pose.clone() goal_pose = goal_pose.repeat(traj_pose.shape[0]) assert torch.max(goal_pose.linear_distance(traj_pose)) < 0.005 @pytest.mark.parametrize( "motion_gen", [ ([True, -1]), ([False, -1]), ([True, 10]), ([False, 10]), ], indirect=True, ) def test_hold_partial_pose(motion_gen): retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = state.ee_pose.clone() start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone() goal_pose.position = start_pose.position.clone() goal_pose.quaternion = start_pose.quaternion.clone() if motion_gen.project_pose_to_goal_frame: offset_pose = Pose.from_list([0, 0.1, 0, 1, 0, 0, 0]) goal_pose = goal_pose.multiply(offset_pose) else: goal_pose.position[0, 1] += 0.2 m_config = MotionGenPlanConfig( max_attempts=1, pose_cost_metric=PoseCostMetric( hold_partial_pose=True, hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 1, 0, 1]), ), ) result = motion_gen.plan_single(start_state, goal_pose, m_config.clone()) assert torch.count_nonzero(result.success) == 1 traj_pose = motion_gen.compute_kinematics(result.optimized_plan).ee_pose.clone() goal_pose = goal_pose.repeat(traj_pose.shape[0]) if motion_gen.project_pose_to_goal_frame: traj_pose = goal_pose.compute_local_pose(traj_pose) traj_pose.position[:, 1] = 0.0 assert torch.max(traj_pose.position) < 0.005 else: goal_pose.position[:, 1] = 0.0 traj_pose.position[:, 1] = 0.0 assert torch.max(goal_pose.linear_distance(traj_pose)) < 0.005 @pytest.mark.parametrize( "motion_gen", [ ([True, -1]), ([False, -1]), ([True, 10]), ([False, 10]), ], indirect=True, ) def test_hold_partial_pose_fail(motion_gen): retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = state.ee_pose.clone() start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) start_pose = motion_gen.compute_kinematics(start_state).ee_pose.clone() goal_pose.position = start_pose.position.clone() goal_pose.quaternion = start_pose.quaternion.clone() if motion_gen.project_pose_to_goal_frame: offset_pose = Pose.from_list([0, 0.1, 0.1, 1, 0, 0, 0]) goal_pose = goal_pose.multiply(offset_pose) else: goal_pose.position[0, 1] += 0.2 goal_pose.position[0, 0] += 0.2 m_config = MotionGenPlanConfig( max_attempts=1, pose_cost_metric=PoseCostMetric( hold_partial_pose=True, hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 1, 0, 1]), ), ) result = motion_gen.plan_single(start_state, goal_pose, m_config.clone()) assert torch.count_nonzero(result.success) == 0 assert result.valid_query == False