# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # Third Party import pytest import torch # CuRobo from curobo.geom.types import WorldConfig from curobo.types.base import TensorDeviceType from curobo.types.math import Pose from curobo.types.robot import JointState, RobotConfig from curobo.util.trajectory import InterpolateType from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml from curobo.wrap.reacher.motion_gen import ( MotionGen, MotionGenConfig, MotionGenPlanConfig, MotionGenStatus, ) @pytest.fixture(scope="module") def motion_gen(): tensor_args = TensorDeviceType() world_file = "collision_table.yml" robot_file = "franka.yml" motion_gen_config = MotionGenConfig.load_from_robot_config( robot_file, world_file, tensor_args, use_cuda_graph=False, ) motion_gen_instance = MotionGen(motion_gen_config) return motion_gen_instance @pytest.fixture(scope="module") def motion_gen_batch_env(): tensor_args = TensorDeviceType() world_files = ["collision_table.yml", "collision_test.yml"] world_cfg = [ WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) for world_file in world_files ] robot_file = "franka.yml" motion_gen_config = MotionGenConfig.load_from_robot_config( robot_file, world_cfg, tensor_args, use_cuda_graph=False, ) motion_gen_instance = MotionGen(motion_gen_config) return motion_gen_instance @pytest.mark.parametrize( "motion_gen_str,interpolation", [ ("motion_gen", InterpolateType.LINEAR), ("motion_gen", InterpolateType.CUBIC), # ("motion_gen", InterpolateType.KUNZ_STILMAN_OPTIMAL), ("motion_gen", InterpolateType.LINEAR_CUDA), ], ) def test_motion_gen_single(motion_gen_str, interpolation, request): motion_gen = request.getfixturevalue(motion_gen_str) motion_gen.update_interpolation_type(interpolation) motion_gen.reset() retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = Pose(state.ee_pos_seq, quaternion=state.ee_quat_seq) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10) result = motion_gen.plan_single(start_state, goal_pose, m_config) # get final solutions: assert torch.count_nonzero(result.success) == 1 reached_state = motion_gen.compute_kinematics(result.optimized_plan[-1]) assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005 def test_motion_gen_goalset(motion_gen): motion_gen.reset() retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = Pose( state.ee_pos_seq.repeat(2, 1).view(1, -1, 3), quaternion=state.ee_quat_seq.repeat(2, 1).view(1, -1, 4), ) goal_pose.position[0, 0, 0] -= 0.1 start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10) result = motion_gen.plan_goalset(start_state, goal_pose, m_config) # get final solutions: assert torch.count_nonzero(result.success) == 1 reached_state = motion_gen.compute_kinematics(result.optimized_plan[-1]) assert ( torch.min( torch.norm(goal_pose.position[:, 0, :] - reached_state.ee_pos_seq), torch.norm(goal_pose.position[:, 1, :] - reached_state.ee_pos_seq), ) < 0.005 ) assert result.goalset_index is not None assert ( torch.norm(goal_pose.position[:, result.goalset_index, :] - reached_state.ee_pos_seq) < 0.005 ) def test_motion_gen_batch_goalset(motion_gen): motion_gen.reset() retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = Pose( state.ee_pos_seq.repeat(6, 1).view(3, -1, 3).clone(), quaternion=state.ee_quat_seq.repeat(6, 1).view(3, -1, 4).clone(), ) goal_pose.position[0, 1, 1] = 0.2 goal_pose.position[1, 0, 1] = 0.2 goal_pose.position[2, 1, 1] = 0.2 start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.2).repeat_seeds(3) m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10, max_attempts=1) result = motion_gen.plan_batch_goalset(start_state, goal_pose, m_config) # get final solutions: assert torch.count_nonzero(result.success) == result.success.shape[0] reached_state = motion_gen.compute_kinematics(result.optimized_plan.trim_trajectory(-1)) # goal_position = torch.cat( [ goal_pose.position[x, result.goalset_index[x], :].unsqueeze(0) for x in range(len(result.goalset_index)) ] ) assert result.goalset_index is not None assert torch.max(torch.norm(goal_position - reached_state.ee_pos_seq, dim=-1)) < 0.005 def test_motion_gen_batch(motion_gen): motion_gen.reset() retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = Pose( state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze() ).repeat_seeds(2) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2) goal_pose.position[1, 0] -= 0.1 m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=12) result = motion_gen.plan_batch(start_state, goal_pose.clone(), m_config) assert torch.count_nonzero(result.success) == 2 # get final solutions: q = result.optimized_plan.trim_trajectory(-1).squeeze(1) reached_state = motion_gen.compute_kinematics(q) assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005 @pytest.mark.parametrize( "motion_gen_str,interpolation", [ ("motion_gen", InterpolateType.LINEAR), ("motion_gen", InterpolateType.CUBIC), # ("motion_gen", InterpolateType.KUNZ_STILMAN_OPTIMAL), ("motion_gen", InterpolateType.LINEAR_CUDA), ], ) def test_motion_gen_batch_graph(motion_gen_str: str, interpolation: InterpolateType, request): motion_gen = request.getfixturevalue(motion_gen_str) motion_gen.graph_planner.interpolation_type = interpolation motion_gen.reset() retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = Pose( state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze() ).repeat_seeds(5) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(5) goal_pose.position[1, 0] -= 0.05 m_config = MotionGenPlanConfig(True, False) result = motion_gen.plan_batch(start_state, goal_pose, m_config) assert torch.count_nonzero(result.success) > 0 # get final solutions: q = result.interpolated_plan.trim_trajectory(-1).squeeze(1) reached_state = motion_gen.compute_kinematics(q) assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005 def test_motion_gen_batch_env(motion_gen_batch_env): motion_gen_batch_env.reset() retract_cfg = motion_gen_batch_env.get_retract_config() state = motion_gen_batch_env.compute_kinematics( JointState.from_position(retract_cfg.view(1, -1)) ) goal_pose = Pose( state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze() ).repeat_seeds(2) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2) goal_pose.position[1, 0] -= 0.1 m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10) result = motion_gen_batch_env.plan_batch_env(start_state, goal_pose, m_config) assert torch.count_nonzero(result.success) == 2 # get final solutions: reached_state = motion_gen_batch_env.compute_kinematics( result.optimized_plan.trim_trajectory(-1).squeeze(1) ) assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005 def test_motion_gen_batch_env_goalset(motion_gen_batch_env): motion_gen_batch_env.reset() retract_cfg = motion_gen_batch_env.get_retract_config() state = motion_gen_batch_env.compute_kinematics( JointState.from_position(retract_cfg.view(1, -1)) ) goal_pose = Pose( state.ee_pos_seq.repeat(4, 1).view(2, -1, 3), quaternion=state.ee_quat_seq.repeat(4, 1).view(2, -1, 4), ) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2) goal_pose.position[1, 0] -= 0.2 m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10) result = motion_gen_batch_env.plan_batch_env_goalset(start_state, goal_pose, m_config) assert torch.count_nonzero(result.success) > 0 # get final solutions: reached_state = motion_gen_batch_env.compute_kinematics( result.optimized_plan.trim_trajectory(-1).squeeze(1) ) assert ( torch.min( torch.norm(goal_pose.position[:, 0, :] - reached_state.ee_pos_seq), torch.norm(goal_pose.position[:, 1, :] - reached_state.ee_pos_seq), ) < 0.005 ) goal_position = torch.cat( [ goal_pose.position[x, result.goalset_index[x], :].unsqueeze(0) for x in range(len(result.goalset_index)) ] ) assert result.goalset_index is not None assert torch.max(torch.norm(goal_position - reached_state.ee_pos_seq, dim=-1)) < 0.005 @pytest.mark.parametrize( "motion_gen_str,enable_graph", [ ("motion_gen", True), ("motion_gen", False), ], ) def test_motion_gen_single_js(motion_gen_str, enable_graph, request): motion_gen = request.getfixturevalue(motion_gen_str) motion_gen.reset() retract_cfg = motion_gen.get_retract_config() start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) m_config = MotionGenPlanConfig(enable_graph=enable_graph, max_attempts=2) goal_state = start_state.clone() goal_state.position -= 0.3 result = motion_gen.plan_single_js(start_state, goal_state, m_config) assert torch.count_nonzero(result.success) == 1 reached_state = result.optimized_plan[-1] assert torch.norm(goal_state.position - reached_state.position) < 0.05 def test_motion_gen_single_js_invalid_start(motion_gen): motion_gen.reset() retract_cfg = motion_gen.get_retract_config() start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) m_config = MotionGenPlanConfig(max_attempts=2) goal_state = start_state.clone() goal_state.position -= 0.3 start_state.position[0] += 10.0 result = motion_gen.plan_single_js(start_state, goal_state, m_config) assert torch.count_nonzero(result.success) == 0 assert result.valid_query == False assert result.status == MotionGenStatus.INVALID_START def test_motion_gen_single_invalid(motion_gen): motion_gen.reset() retract_cfg = motion_gen.get_retract_config() state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1))) goal_pose = Pose(state.ee_pos_seq, quaternion=state.ee_quat_seq) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3) start_state.position[..., 1] = 1.7 m_config = MotionGenPlanConfig(False, True, max_attempts=1) result = motion_gen.plan_single(start_state, goal_pose, m_config) # get final solutions: assert torch.count_nonzero(result.success) == 0 assert result.valid_query == False assert result.status == MotionGenStatus.INVALID_START