# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # Third Party import pytest import torch # CuRobo from curobo.geom.types import WorldConfig from curobo.rollout.rollout_base import Goal from curobo.types.base import TensorDeviceType from curobo.types.math import Pose from curobo.types.robot import JointState, RobotConfig from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml from curobo.wrap.reacher.trajopt import TrajOptSolver, TrajOptSolverConfig def trajopt_base_config(): tensor_args = TensorDeviceType() world_file = "collision_table.yml" robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) trajopt_config = TrajOptSolverConfig.load_from_robot_config( robot_cfg, world_cfg, tensor_args, use_cuda_graph=False, use_fixed_samples=True, n_collision_envs=1, collision_cache={"obb": 10}, seed_ratio={"linear": 0.5, "start": 0.25, "goal": 0.25}, num_seeds=10, ) return trajopt_config def trajopt_es_config(): tensor_args = TensorDeviceType() world_file = "collision_table.yml" robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) trajopt_config = TrajOptSolverConfig.load_from_robot_config( robot_cfg, world_cfg, tensor_args, use_cuda_graph=False, use_es=True, es_learning_rate=0.01, ) return trajopt_config def trajopt_gd_config(): tensor_args = TensorDeviceType() world_file = "collision_table.yml" robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) trajopt_config = TrajOptSolverConfig.load_from_robot_config( robot_cfg, world_cfg, tensor_args, use_cuda_graph=False, use_gradient_descent=True, grad_trajopt_iters=500, ) return trajopt_config def trajopt_no_particle_opt_config(): tensor_args = TensorDeviceType() world_file = "collision_table.yml" robot_file = "franka.yml" robot_cfg = RobotConfig.from_dict( load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] ) world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file))) trajopt_config = TrajOptSolverConfig.load_from_robot_config( robot_cfg, world_cfg, tensor_args, use_cuda_graph=False, use_particle_opt=False, ) return trajopt_config @pytest.mark.parametrize( "config,expected", [ (trajopt_base_config(), True), (trajopt_es_config(), True), (trajopt_gd_config(), True), (trajopt_no_particle_opt_config(), True), ], ) def test_eval(config, expected): trajopt_solver = TrajOptSolver(config) q_start = trajopt_solver.retract_config q_goal = q_start.clone() + 0.1 kin_state = trajopt_solver.fk(q_goal) goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion) goal_state = JointState.from_position(q_goal) current_state = JointState.from_position(q_start) js_goal = Goal(goal_pose=goal_pose, goal_state=goal_state, current_state=current_state) result = trajopt_solver.solve_single(js_goal) assert result.success.item() == expected