# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # Third Party import pytest import torch # CuRobo from curobo.types.base import TensorDeviceType from curobo.types.math import Pose from curobo.types.robot import JointState from curobo.util_file import get_robot_configs_path, join_path, load_yaml from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig @pytest.fixture(scope="module") def motion_gen(): tensor_args = TensorDeviceType() world_file = "collision_test.yml" robot_file = "franka.yml" motion_gen_config = MotionGenConfig.load_from_robot_config( robot_file, world_file, tensor_args, trajopt_tsteps=26, use_cuda_graph=False, num_trajopt_seeds=50, fixed_iters_trajopt=True, evaluate_interpolated_trajectory=True, ) motion_gen_instance = MotionGen(motion_gen_config) return motion_gen_instance def test_motion_gen_attach_obstacle(motion_gen): obstacle = motion_gen.world_model.objects[-1].name retract_cfg = motion_gen.get_retract_config() start_state = JointState.from_position(retract_cfg.view(1, -1)) motion_gen.attach_objects_to_robot(start_state, [obstacle]) assert True def test_motion_gen_attach_obstacle_offset(motion_gen): obstacle = motion_gen.world_model.objects[-1].name retract_cfg = motion_gen.get_retract_config() start_state = JointState.from_position(retract_cfg.view(1, -1)) offset_pose = Pose.from_list([0, 0, 0.005, 1, 0, 0, 0], motion_gen.tensor_args) motion_gen.attach_objects_to_robot( start_state, [obstacle], world_objects_pose_offset=offset_pose ) assert True def test_motion_gen_lock_js_update(): tensor_args = TensorDeviceType() world_file = "collision_table.yml" robot_file = "franka_mobile.yml" robot_config = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] robot_config["kinematics"]["lock_joints"] = {"base_x": 0.0, "base_y": 0.0, "base_z": 0.0} motion_gen_config = MotionGenConfig.load_from_robot_config( robot_config, world_file, tensor_args, use_cuda_graph=True, ) motion_gen_instance = MotionGen(motion_gen_config) motion_gen_instance.warmup() retract_cfg = motion_gen_instance.get_retract_config() start_state = JointState.from_position(retract_cfg.view(1, -1)) kin_state = motion_gen_instance.compute_kinematics(start_state) ee_pose = kin_state.ee_pose.clone() # test motion gen: plan_start = start_state.clone() plan_start.position[..., :-2] += 0.1 result = motion_gen_instance.plan_single(plan_start, ee_pose) assert result.success.item() lock_js = {"base_x": 1.0, "base_y": 0.0, "base_z": 0.0} motion_gen_instance.update_locked_joints(lock_js, robot_config) kin_state_new = motion_gen_instance.compute_kinematics(start_state) ee_pose_shift = kin_state_new.ee_pose.clone() assert torch.norm(ee_pose.position[..., 0] - ee_pose_shift.position[..., 0]).item() == 1.0 assert torch.norm(ee_pose.position[..., 1:] - ee_pose_shift.position[..., 1:]).item() == 0.0 # test motion gen with new lock state: result = motion_gen_instance.plan_single(plan_start, ee_pose_shift) assert result.success.item() result = motion_gen_instance.plan_single( plan_start, ee_pose, MotionGenPlanConfig(max_attempts=3) ) assert result.success.item() == False