# # Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. # # CuRobo from curobo.types.base import TensorDeviceType from curobo.types.math import Pose from curobo.types.robot import JointState, RobotConfig from curobo.util_file import get_robot_configs_path, join_path, load_yaml from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig def test_motion_gen(): tensor_args = TensorDeviceType() world_file = "collision_test.yml" robot_file = "franka.yml" motion_gen_config = MotionGenConfig.load_from_robot_config( robot_file, world_file, tensor_args, trajopt_tsteps=40, use_cuda_graph=True, ) motion_gen = MotionGen(motion_gen_config) robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args) retract_cfg = motion_gen.get_retract_config() state = motion_gen.rollout_fn.compute_kinematics( JointState.from_position(retract_cfg.view(1, -1)) ) retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.5) result = motion_gen.plan(start_state, retract_pose, enable_graph=False) assert result.success.item() def test_motion_gen_attach_object(): tensor_args = TensorDeviceType() world_file = "collision_test.yml" robot_file = "franka.yml" motion_gen_config = MotionGenConfig.load_from_robot_config( robot_file, world_file, tensor_args, trajopt_tsteps=40, use_cuda_graph=True, ) motion_gen = MotionGen(motion_gen_config) robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args) retract_cfg = motion_gen.get_retract_config() state = motion_gen.rollout_fn.compute_kinematics( JointState.from_position(retract_cfg.view(1, -1)) ) retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.5) result = motion_gen.plan(start_state, retract_pose, enable_graph=False) assert result.success.item() motion_gen.attach_spheres_to_robot(sphere_radius=0.03) result = motion_gen.plan(start_state, retract_pose, enable_graph=False) assert result.success.item() def test_motion_gen_graph(): tensor_args = TensorDeviceType() world_file = "collision_test.yml" robot_file = "franka.yml" motion_gen_config = MotionGenConfig.load_from_robot_config( robot_file, world_file, tensor_args, trajopt_tsteps=40 ) motion_gen = MotionGen(motion_gen_config) motion_gen.reset() robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"] robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args) retract_cfg = motion_gen.get_retract_config() state = motion_gen.rollout_fn.compute_kinematics( JointState.from_position(retract_cfg.view(1, -1)) ) retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()) start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.1) start_state.position[:, 0] = 2.0 result = motion_gen.plan( start_state, retract_pose, enable_graph=True, partial_ik_opt=False, enable_opt=False ) assert result.success.item()