improve unit test

This commit is contained in:
Balakumar Sundaralingam
2024-04-29 20:16:49 -07:00
parent e070deab90
commit e6a5ab2d18
3 changed files with 43 additions and 25 deletions

View File

@@ -10,6 +10,12 @@ its affiliates is strictly prohibited.
-->
# Changelog
## Latest Commit
### BugFixes & Misc.
- Fix bug in evaluator to account for dof maximum acceleration and jerk.
- Add unit test for different acceleration and jerk limits.
## Version 0.7.2
### New Features

View File

@@ -16,45 +16,57 @@ import torch
# CuRobo
from curobo.types.base import TensorDeviceType
from curobo.types.robot import JointState
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
from curobo.util_file import get_robot_configs_path, join_path, load_yaml
from curobo.wrap.reacher.evaluator import TrajEvaluatorConfig
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
@pytest.fixture(scope="module", params=[True, False])
def evaluate_interpolated_trajectory(request):
return request.param
@pytest.fixture(scope="module")
def motion_gen(evaluate_interpolated_trajectory):
def run_motion_gen(robot_file, evaluate_interpolated_trajectory, max_acc, max_jerk):
tensor_args = TensorDeviceType()
world_file = "collision_test.yml"
robot_file = "franka.yml"
dof = 9
traj_evaluator_config = TrajEvaluatorConfig(
max_acc=torch.ones((dof), device=tensor_args.device, dtype=tensor_args.dtype),
max_jerk=torch.ones((dof), device=tensor_args.device, dtype=tensor_args.dtype),
min_dt=torch.tensor(0.01, device=tensor_args.device, dtype=tensor_args.dtype),
max_dt=torch.tensor(1.5, device=tensor_args.device, dtype=tensor_args.dtype)
)
robot_data = load_yaml(join_path(get_robot_configs_path(), robot_file))
dof = len(robot_data["robot_cfg"]["kinematics"]["cspace"]["joint_names"])
robot_data["robot_cfg"]["kinematics"]["cspace"]["max_acceleration"] = [
max_acc for i in range(9)
]
robot_data["robot_cfg"]["kinematics"]["cspace"]["max_jerk"] = [max_jerk for i in range(9)]
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
robot_data,
world_file,
tensor_args,
trajopt_tsteps=26,
use_cuda_graph=False,
num_trajopt_seeds=50,
fixed_iters_trajopt=True,
maximum_trajectory_dt=1.5,
evaluate_interpolated_trajectory=evaluate_interpolated_trajectory,
traj_evaluator_config=traj_evaluator_config,
)
motion_gen = MotionGen(motion_gen_config)
motion_gen.warmup(warmup_js_trajopt=True)
retract_cfg = motion_gen.get_retract_config()
start_state = JointState.from_position(retract_cfg.view(1, -1).clone())
goal_state = JointState.from_position(retract_cfg.view(1, -1).clone())
goal_state = JointState.from_position(retract_cfg.view(1, -1).clone() + 0.2)
result = motion_gen.plan_single_js(start_state, goal_state, MotionGenPlanConfig(max_attempts=1))
result = motion_gen.plan_single_js(
start_state, goal_state, MotionGenPlanConfig(max_attempts=5, enable_graph_attempt=10)
)
return result
def test_motion_gen(motion_gen):
return True
@pytest.mark.parametrize(
"robot_file, evaluate_interpolated_traj, max_acc, max_jerk",
[
("franka.yml", False, 1.0, 500.0),
("franka.yml", True, 0.1, 500.0),
("franka.yml", True, 1.0, 500.0),
("ur5e.yml", False, 1.0, 500.0),
("ur5e.yml", True, 0.1, 500.0),
("ur5e.yml", True, 1.0, 500.0),
],
)
def test_motion_gen_trajectory(robot_file, evaluate_interpolated_traj, max_acc, max_jerk):
result = run_motion_gen(robot_file, evaluate_interpolated_traj, max_acc, max_jerk)
assert result.success.item()
assert torch.max(torch.abs(result.optimized_plan.acceleration)) <= max_acc
assert torch.max(torch.abs(result.optimized_plan.jerk)) <= max_jerk