improve unit test
This commit is contained in:
@@ -10,6 +10,12 @@ its affiliates is strictly prohibited.
|
|||||||
-->
|
-->
|
||||||
# Changelog
|
# Changelog
|
||||||
|
|
||||||
|
## Latest Commit
|
||||||
|
|
||||||
|
### BugFixes & Misc.
|
||||||
|
- Fix bug in evaluator to account for dof maximum acceleration and jerk.
|
||||||
|
- Add unit test for different acceleration and jerk limits.
|
||||||
|
|
||||||
## Version 0.7.2
|
## Version 0.7.2
|
||||||
|
|
||||||
### New Features
|
### New Features
|
||||||
|
|||||||
@@ -16,45 +16,57 @@ import torch
|
|||||||
# CuRobo
|
# CuRobo
|
||||||
from curobo.types.base import TensorDeviceType
|
from curobo.types.base import TensorDeviceType
|
||||||
from curobo.types.robot import JointState
|
from curobo.types.robot import JointState
|
||||||
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
from curobo.util_file import get_robot_configs_path, join_path, load_yaml
|
||||||
from curobo.wrap.reacher.evaluator import TrajEvaluatorConfig
|
from curobo.wrap.reacher.evaluator import TrajEvaluatorConfig
|
||||||
|
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
||||||
|
|
||||||
@pytest.fixture(scope="module", params=[True, False])
|
|
||||||
def evaluate_interpolated_trajectory(request):
|
|
||||||
return request.param
|
|
||||||
|
|
||||||
@pytest.fixture(scope="module")
|
def run_motion_gen(robot_file, evaluate_interpolated_trajectory, max_acc, max_jerk):
|
||||||
def motion_gen(evaluate_interpolated_trajectory):
|
|
||||||
tensor_args = TensorDeviceType()
|
tensor_args = TensorDeviceType()
|
||||||
world_file = "collision_test.yml"
|
world_file = "collision_test.yml"
|
||||||
robot_file = "franka.yml"
|
robot_data = load_yaml(join_path(get_robot_configs_path(), robot_file))
|
||||||
dof = 9
|
dof = len(robot_data["robot_cfg"]["kinematics"]["cspace"]["joint_names"])
|
||||||
traj_evaluator_config = TrajEvaluatorConfig(
|
|
||||||
max_acc=torch.ones((dof), device=tensor_args.device, dtype=tensor_args.dtype),
|
robot_data["robot_cfg"]["kinematics"]["cspace"]["max_acceleration"] = [
|
||||||
max_jerk=torch.ones((dof), device=tensor_args.device, dtype=tensor_args.dtype),
|
max_acc for i in range(9)
|
||||||
min_dt=torch.tensor(0.01, device=tensor_args.device, dtype=tensor_args.dtype),
|
]
|
||||||
max_dt=torch.tensor(1.5, device=tensor_args.device, dtype=tensor_args.dtype)
|
robot_data["robot_cfg"]["kinematics"]["cspace"]["max_jerk"] = [max_jerk for i in range(9)]
|
||||||
)
|
|
||||||
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
||||||
robot_file,
|
robot_data,
|
||||||
world_file,
|
world_file,
|
||||||
tensor_args,
|
tensor_args,
|
||||||
trajopt_tsteps=26,
|
|
||||||
use_cuda_graph=False,
|
use_cuda_graph=False,
|
||||||
num_trajopt_seeds=50,
|
maximum_trajectory_dt=1.5,
|
||||||
fixed_iters_trajopt=True,
|
|
||||||
evaluate_interpolated_trajectory=evaluate_interpolated_trajectory,
|
evaluate_interpolated_trajectory=evaluate_interpolated_trajectory,
|
||||||
traj_evaluator_config=traj_evaluator_config,
|
|
||||||
)
|
)
|
||||||
motion_gen = MotionGen(motion_gen_config)
|
motion_gen = MotionGen(motion_gen_config)
|
||||||
motion_gen.warmup(warmup_js_trajopt=True)
|
|
||||||
|
|
||||||
retract_cfg = motion_gen.get_retract_config()
|
retract_cfg = motion_gen.get_retract_config()
|
||||||
|
|
||||||
start_state = JointState.from_position(retract_cfg.view(1, -1).clone())
|
start_state = JointState.from_position(retract_cfg.view(1, -1).clone())
|
||||||
goal_state = JointState.from_position(retract_cfg.view(1, -1).clone())
|
goal_state = JointState.from_position(retract_cfg.view(1, -1).clone() + 0.2)
|
||||||
|
|
||||||
result = motion_gen.plan_single_js(start_state, goal_state, MotionGenPlanConfig(max_attempts=1))
|
result = motion_gen.plan_single_js(
|
||||||
|
start_state, goal_state, MotionGenPlanConfig(max_attempts=5, enable_graph_attempt=10)
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
def test_motion_gen(motion_gen):
|
|
||||||
return True
|
@pytest.mark.parametrize(
|
||||||
|
"robot_file, evaluate_interpolated_traj, max_acc, max_jerk",
|
||||||
|
[
|
||||||
|
("franka.yml", False, 1.0, 500.0),
|
||||||
|
("franka.yml", True, 0.1, 500.0),
|
||||||
|
("franka.yml", True, 1.0, 500.0),
|
||||||
|
("ur5e.yml", False, 1.0, 500.0),
|
||||||
|
("ur5e.yml", True, 0.1, 500.0),
|
||||||
|
("ur5e.yml", True, 1.0, 500.0),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_motion_gen_trajectory(robot_file, evaluate_interpolated_traj, max_acc, max_jerk):
|
||||||
|
result = run_motion_gen(robot_file, evaluate_interpolated_traj, max_acc, max_jerk)
|
||||||
|
|
||||||
|
assert result.success.item()
|
||||||
|
assert torch.max(torch.abs(result.optimized_plan.acceleration)) <= max_acc
|
||||||
|
assert torch.max(torch.abs(result.optimized_plan.jerk)) <= max_jerk
|
||||||
|
|||||||
Reference in New Issue
Block a user