Improved precision, quality and js planner.
This commit is contained in:
@@ -109,32 +109,35 @@ def test_batch_goalset_padded(motion_gen_batch):
|
||||
# run goalset planning
|
||||
motion_gen.reset()
|
||||
|
||||
retract_cfg = motion_gen.get_retract_config()
|
||||
retract_cfg = motion_gen.get_retract_config().clone()
|
||||
|
||||
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
||||
|
||||
goal_pose = Pose(
|
||||
state.ee_pos_seq.repeat(3 * 3, 1).view(3, -1, 3).contiguous(),
|
||||
quaternion=state.ee_quat_seq.repeat(3 * 3, 1).view(3, -1, 4).contiguous(),
|
||||
)
|
||||
).clone()
|
||||
goal_pose.position[0, 1, 1] = 0.2
|
||||
goal_pose.position[1, 0, 1] = 0.2
|
||||
goal_pose.position[2, 1, 1] = 0.2
|
||||
retract_cfg = motion_gen.get_retract_config().clone()
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.2).repeat_seeds(3)
|
||||
|
||||
m_config = MotionGenPlanConfig(False, True, max_attempts=10, enable_graph_attempt=20)
|
||||
result = motion_gen.plan_batch_goalset(start_state, goal_pose, m_config.clone())
|
||||
m_config = MotionGenPlanConfig(enable_graph_attempt=100, max_attempts=2)
|
||||
result = motion_gen.plan_batch_goalset(start_state, goal_pose.clone(), m_config.clone())
|
||||
|
||||
# get final solutions:
|
||||
assert torch.count_nonzero(result.success) == result.success.shape[0]
|
||||
|
||||
reached_state = motion_gen.compute_kinematics(result.optimized_plan.trim_trajectory(-1))
|
||||
reached_state = motion_gen.compute_kinematics(
|
||||
result.optimized_plan.trim_trajectory(-1).squeeze(1)
|
||||
)
|
||||
|
||||
#
|
||||
goal_position = torch.cat(
|
||||
[
|
||||
goal_pose.position[x, result.goalset_index[x], :].unsqueeze(0)
|
||||
goal_pose.position[x, result.goalset_index[x], :].clone().unsqueeze(0)
|
||||
for x in range(len(result.goalset_index))
|
||||
]
|
||||
)
|
||||
@@ -161,7 +164,7 @@ def test_batch_goalset_padded(motion_gen_batch):
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.2).repeat_seeds(3)
|
||||
|
||||
result = motion_gen.plan_batch_goalset(start_state, goal_pose, m_config)
|
||||
result = motion_gen.plan_batch_goalset(start_state, goal_pose.clone(), m_config)
|
||||
|
||||
# get final solutions:
|
||||
assert torch.count_nonzero(result.success) == result.success.shape[0]
|
||||
@@ -192,7 +195,7 @@ def test_batch_goalset_padded(motion_gen_batch):
|
||||
|
||||
goal_pose.position[1, 0] -= 0.1
|
||||
|
||||
result = motion_gen.plan_batch(start_state, goal_pose.clone(), m_config)
|
||||
result = motion_gen.plan_batch(start_state, goal_pose, m_config)
|
||||
assert torch.count_nonzero(result.success) == 3
|
||||
|
||||
# get final solutions:
|
||||
|
||||
Reference in New Issue
Block a user