constrained planning, robot segmentation
This commit is contained in:
68
tests/motion_gen_speed_test.py
Normal file
68
tests/motion_gen_speed_test.py
Normal file
@@ -0,0 +1,68 @@
|
||||
#
|
||||
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
||||
# property and proprietary rights in and to this material, related
|
||||
# documentation and any modifications thereto. Any use, reproduction,
|
||||
# disclosure or distribution of this material and related documentation
|
||||
# without an express license agreement from NVIDIA CORPORATION or
|
||||
# its affiliates is strictly prohibited.
|
||||
#
|
||||
|
||||
# Third Party
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
# CuRobo
|
||||
from curobo.geom.types import WorldConfig
|
||||
from curobo.types.base import TensorDeviceType
|
||||
from curobo.types.math import Pose
|
||||
from curobo.types.robot import JointState, RobotConfig
|
||||
from curobo.util.trajectory import InterpolateType
|
||||
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
|
||||
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def motion_gen(request):
|
||||
tensor_args = TensorDeviceType()
|
||||
world_file = "collision_table.yml"
|
||||
robot_file = "franka.yml"
|
||||
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
||||
robot_file,
|
||||
world_file,
|
||||
tensor_args,
|
||||
velocity_scale=request.param,
|
||||
interpolation_steps=10000,
|
||||
interpolation_dt=0.02,
|
||||
)
|
||||
motion_gen_instance = MotionGen(motion_gen_config)
|
||||
return motion_gen_instance
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"motion_gen",
|
||||
[
|
||||
(1.0),
|
||||
(0.75),
|
||||
(0.5),
|
||||
(0.25),
|
||||
(0.15),
|
||||
(0.1),
|
||||
],
|
||||
indirect=True,
|
||||
)
|
||||
def test_motion_gen_velocity_scale(motion_gen):
|
||||
retract_cfg = motion_gen.get_retract_config()
|
||||
|
||||
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
||||
|
||||
goal_pose = Pose(state.ee_pos_seq, quaternion=state.ee_quat_seq)
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
||||
|
||||
m_config = MotionGenPlanConfig(False, True, max_attempts=10)
|
||||
|
||||
result = motion_gen.plan_single(start_state, goal_pose, m_config)
|
||||
|
||||
assert torch.count_nonzero(result.success) == 1
|
||||
Reference in New Issue
Block a user