constrained planning, robot segmentation

This commit is contained in:
Balakumar Sundaralingam
2024-02-22 21:45:47 -08:00
parent 88eac64edc
commit bafdf80c05
102 changed files with 12440 additions and 8112 deletions

View File

@@ -14,11 +14,10 @@ import pytest
import torch
# CuRobo
from curobo.geom.types import WorldConfig
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import JointState, RobotConfig
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.types.robot import JointState
from curobo.util_file import get_robot_configs_path, join_path, load_yaml
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
@@ -60,3 +59,49 @@ def test_motion_gen_attach_obstacle_offset(motion_gen):
start_state, [obstacle], world_objects_pose_offset=offset_pose
)
assert True
def test_motion_gen_lock_js_update():
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "franka_mobile.yml"
robot_config = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
robot_config["kinematics"]["lock_joints"] = {"base_x": 0.0, "base_y": 0.0, "base_z": 0.0}
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_config,
world_file,
tensor_args,
use_cuda_graph=True,
)
motion_gen_instance = MotionGen(motion_gen_config)
motion_gen_instance.warmup()
retract_cfg = motion_gen_instance.get_retract_config()
start_state = JointState.from_position(retract_cfg.view(1, -1))
kin_state = motion_gen_instance.compute_kinematics(start_state)
ee_pose = kin_state.ee_pose.clone()
# test motion gen:
plan_start = start_state.clone()
plan_start.position[..., :-2] += 0.1
result = motion_gen_instance.plan_single(plan_start, ee_pose)
assert result.success.item()
lock_js = {"base_x": 1.0, "base_y": 0.0, "base_z": 0.0}
motion_gen_instance.update_locked_joints(lock_js, robot_config)
kin_state_new = motion_gen_instance.compute_kinematics(start_state)
ee_pose_shift = kin_state_new.ee_pose.clone()
assert torch.norm(ee_pose.position[..., 0] - ee_pose_shift.position[..., 0]).item() == 1.0
assert torch.norm(ee_pose.position[..., 1:] - ee_pose_shift.position[..., 1:]).item() == 0.0
# test motion gen with new lock state:
result = motion_gen_instance.plan_single(plan_start, ee_pose_shift)
assert result.success.item()
result = motion_gen_instance.plan_single(
plan_start, ee_pose, MotionGenPlanConfig(max_attempts=3)
)
assert result.success.item() == False