constrained planning, robot segmentation

This commit is contained in:
Balakumar Sundaralingam
2024-02-22 21:45:47 -08:00
parent 88eac64edc
commit bafdf80c05
102 changed files with 12440 additions and 8112 deletions

View File

@@ -0,0 +1,355 @@
#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import torch
a = torch.zeros(4, device="cuda:0")
# Third Party
from omni.isaac.kit import SimulationApp
simulation_app = SimulationApp(
{
"headless": False,
"width": "1920",
"height": "1080",
}
)
# Third Party
import numpy as np
import torch
from helper import add_extensions, add_robot_to_scene
# CuRobo
from curobo.geom.sdf.world import CollisionCheckerType
from curobo.geom.types import Cuboid, WorldConfig
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import JointState, RobotConfig
from curobo.types.state import JointState
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.model.robot_world import RobotWorld, RobotWorldConfig
from curobo.wrap.reacher.motion_gen import (
MotionGen,
MotionGenConfig,
MotionGenPlanConfig,
PoseCostMetric,
)
simulation_app.update()
# Standard Library
import argparse
# Third Party
import carb
from omni.isaac.core import World
from omni.isaac.core.materials import OmniGlass, OmniPBR
from omni.isaac.core.objects import cuboid, sphere
from omni.isaac.core.utils.types import ArticulationAction
# CuRobo
from curobo.util.usd_helper import UsdHelper
parser = argparse.ArgumentParser()
parser.add_argument("--robot", type=str, default="franka.yml", help="robot configuration to load")
args = parser.parse_args()
if __name__ == "__main__":
my_world = World(stage_units_in_meters=1.0)
stage = my_world.stage
n_obstacle_cuboids = 10
n_obstacle_mesh = 10
stage = my_world.stage
my_world.scene.add_default_ground_plane()
xform = stage.DefinePrim("/World", "Xform")
stage.SetDefaultPrim(xform)
target_material = OmniPBR("/World/looks/t", color=np.array([0, 1, 0]))
target_material_2 = OmniPBR("/World/looks/t2", color=np.array([0, 1, 0]))
target_material_plane = OmniGlass(
"/World/looks/t3", color=np.array([0, 1, 0]), ior=1.25, depth=0.001, thin_walled=False
)
target_material_line = OmniGlass(
"/World/looks/t4", color=np.array([0, 1, 0]), ior=1.25, depth=0.001, thin_walled=True
)
# target_orient = [0,0,0.707,0.707]
target_orient = [0.5, -0.5, 0.5, 0.5]
target = cuboid.VisualCuboid(
"/World/target_1",
position=np.array([0.55, -0.3, 0.5]),
orientation=np.array(target_orient),
size=0.04,
visual_material=target_material,
)
# Make a target to follow
target_2 = cuboid.VisualCuboid(
"/World/target_2",
position=np.array([0.55, 0.4, 0.5]),
orientation=np.array(target_orient),
size=0.04,
visual_material=target_material_2,
)
x_plane = cuboid.VisualCuboid(
"/World/constraint_plane",
position=np.array([0.55, 0.05, 0.5]),
orientation=np.array(target_orient),
scale=[1.1, 0.001, 1.0],
visual_material=target_material_plane,
)
xz_line = cuboid.VisualCuboid(
"/World/constraint_line",
position=np.array([0.55, 0.05, 0.5]),
orientation=np.array(target_orient),
scale=[0.04, 0.04, 0.65],
visual_material=target_material_line,
)
collision_checker_type = CollisionCheckerType.BLOX
tensor_args = TensorDeviceType()
robot_cfg = load_yaml(join_path(get_robot_configs_path(), args.robot))["robot_cfg"]
j_names = robot_cfg["kinematics"]["cspace"]["joint_names"]
default_config = robot_cfg["kinematics"]["cspace"]["retract_config"]
robot, robot_prim_path = add_robot_to_scene(robot_cfg, my_world, "/World/world_robot/")
world_cfg_table = WorldConfig.from_dict(
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
)
world_cfg_table.cuboid[0].pose[2] -= 0.01
world_cfg1 = WorldConfig.from_dict(
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
).get_mesh_world()
world_cfg1.mesh[0].name += "_mesh"
world_cfg1.mesh[0].pose[2] = -10.5
world_cfg = WorldConfig(cuboid=world_cfg_table.cuboid, mesh=world_cfg1.mesh)
usd_help = UsdHelper()
usd_help.load_stage(my_world.stage)
usd_help.add_world_to_stage(world_cfg_table.get_mesh_world(), base_frame="/World")
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_cfg,
world_cfg,
tensor_args,
collision_checker_type=CollisionCheckerType.MESH,
collision_cache={"obb": n_obstacle_cuboids, "mesh": n_obstacle_mesh},
velocity_scale=0.75,
interpolation_dt=0.02,
ee_link_name="right_gripper",
)
motion_gen = MotionGen(motion_gen_config)
print("warming up..")
motion_gen.warmup(warmup_js_trajopt=False)
world_model = motion_gen.world_collision
i = 0
tensor_args = TensorDeviceType()
target_list = [target, target_2]
target_material_list = [target_material, target_material_2]
for material in target_material_list:
material.set_color(np.array([0.1, 0.1, 0.1]))
target_material_plane.set_color(np.array([1, 1, 1]))
target_material_line.set_color(np.array([1, 1, 1]))
target_idx = 0
cmd_idx = 0
cmd_plan = None
articulation_controller = robot.get_articulation_controller()
plan_config = MotionGenPlanConfig(
enable_graph=False, enable_graph_attempt=4, max_attempts=2, enable_finetune_trajopt=True
)
plan_idx = 0
cmd_step_idx = 0
pose_cost_metric = None
while simulation_app.is_running():
my_world.step(render=True)
if not my_world.is_playing():
if i % 100 == 0:
print("**** Click Play to start simulation *****")
i += 1
# if step_index == 0:
# my_world.play()
continue
step_index = my_world.current_time_step_index
if step_index <= 2:
my_world.reset()
idx_list = [robot.get_dof_index(x) for x in j_names]
robot.set_joint_positions(default_config, idx_list)
robot._articulation_view.set_max_efforts(
values=np.array([5000 for i in range(len(idx_list))]), joint_indices=idx_list
)
if False and step_index % 50 == 0.0: # No obstacle update
obstacles = usd_help.get_obstacles_from_stage(
# only_paths=[obstacles_path],
reference_prim_path=robot_prim_path,
ignore_substring=[
robot_prim_path,
"/World/target",
"/World/defaultGroundPlane",
"/curobo",
],
).get_collision_check_world()
# print(len(obstacles.objects))
motion_gen.update_world(obstacles)
# print("Updated World")
carb.log_info("Synced CuRobo world from stage.")
linear_color = np.ravel([249, 87, 56]) / 255.0
orient_color = np.ravel([103, 148, 54]) / 255.0
disable_color = np.ravel([255, 255, 255]) / 255.0
if cmd_plan is None and step_index % 10 == 0:
if plan_idx == 4:
print("Constrained: Holding tool linear-y")
pose_cost_metric = PoseCostMetric(
hold_partial_pose=True,
hold_vec_weight=motion_gen.tensor_args.to_device([0, 0, 0, 0, 1, 0]),
)
target_material_plane.set_color(linear_color)
if plan_idx == 8:
print("Constrained: Holding tool Orientation and linear-y")
pose_cost_metric = PoseCostMetric(
hold_partial_pose=True,
hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 0, 1, 0]),
)
target_material_plane.set_color(orient_color)
if plan_idx == 12:
print("Constrained: Holding tool linear-y, linear-x")
pose_cost_metric = PoseCostMetric(
hold_partial_pose=True,
hold_vec_weight=motion_gen.tensor_args.to_device([0, 0, 0, 1, 1, 0]),
)
target_material_line.set_color(linear_color)
target_material_plane.set_color(disable_color)
if plan_idx == 16:
print("Constrained: Holding tool Orientation and linear-y, linear-x")
pose_cost_metric = PoseCostMetric(
hold_partial_pose=True,
hold_vec_weight=motion_gen.tensor_args.to_device([1, 1, 1, 1, 1, 0]),
)
target_material_line.set_color(orient_color)
target_material_plane.set_color(disable_color)
if plan_idx > 20:
plan_idx = 0
if plan_idx == 0:
print("Constrained: Reset")
target_material_line.set_color(disable_color)
target_material_plane.set_color(disable_color)
pose_cost_metric = None
plan_config.pose_cost_metric = pose_cost_metric
# motion generation:
for ks in range(len(target_material_list)):
if ks == target_idx:
target_material_list[ks].set_color(np.ravel([0, 1.0, 0]))
else:
target_material_list[ks].set_color(np.ravel([0.1, 0.1, 0.1]))
sim_js = robot.get_joints_state()
sim_js_names = robot.dof_names
cu_js = JointState(
position=tensor_args.to_device(sim_js.positions),
velocity=tensor_args.to_device(sim_js.velocities) * 0.0,
acceleration=tensor_args.to_device(sim_js.velocities) * 0.0,
jerk=tensor_args.to_device(sim_js.velocities) * 0.0,
joint_names=sim_js_names,
)
cu_js = cu_js.get_ordered_joint_state(motion_gen.kinematics.joint_names)
cube_position, cube_orientation = target_list[target_idx].get_world_pose()
# Set EE teleop goals, use cube for simple non-vr init:
ee_translation_goal = cube_position
ee_orientation_teleop_goal = cube_orientation
# compute curobo solution:
ik_goal = Pose(
position=tensor_args.to_device(ee_translation_goal),
quaternion=tensor_args.to_device(ee_orientation_teleop_goal),
)
result = motion_gen.plan_single(cu_js.unsqueeze(0), ik_goal, plan_config)
# ik_result = ik_solver.solve_single(ik_goal, cu_js.position.view(1,-1), cu_js.position.view(1,1,-1))
succ = result.success.item() # ik_result.success.item()
plan_idx += 1
if succ:
cmd_plan = result.get_interpolated_plan()
cmd_plan = motion_gen.get_full_js(cmd_plan)
# get only joint names that are in both:
idx_list = []
common_js_names = []
for x in sim_js_names:
if x in cmd_plan.joint_names:
idx_list.append(robot.get_dof_index(x))
common_js_names.append(x)
# idx_list = [robot.get_dof_index(x) for x in sim_js_names]
cmd_plan = cmd_plan.get_ordered_joint_state(common_js_names)
cmd_idx = 0
target_idx += 1
if target_idx >= len(target_list):
target_idx = 0
else:
carb.log_warn("Plan did not converge to a solution. No action is being taken.")
if cmd_plan is not None:
cmd_state = cmd_plan[cmd_idx]
# get full dof state
art_action = ArticulationAction(
cmd_state.position.cpu().numpy(),
cmd_state.velocity.cpu().numpy(),
joint_indices=idx_list,
)
# set desired joint angles obtained from IK:
articulation_controller.apply_action(art_action)
cmd_step_idx += 1
if cmd_step_idx == 2:
cmd_idx += 1
cmd_step_idx = 0
# for _ in range(2):
# my_world.step(render=False)
if cmd_idx >= len(cmd_plan.position):
cmd_idx = 0
cmd_plan = None
print("finished program")
simulation_app.close()