add isaac sim 2023.1.1 partial support
This commit is contained in:
@@ -437,7 +437,7 @@ class SelfCollisionKinematicsConfig:
|
||||
checks_per_thread: int = 32
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
@dataclass
|
||||
class CudaRobotModelState:
|
||||
"""Dataclass that stores kinematics information."""
|
||||
|
||||
|
||||
@@ -25,13 +25,13 @@ from curobo.util.torch_utils import get_torch_jit_decorator
|
||||
|
||||
|
||||
# kernel for l-bfgs:
|
||||
@get_torch_jit_decorator()
|
||||
@get_torch_jit_decorator(only_valid_for_compile=True)
|
||||
def jit_lbfgs_compute_step_direction(
|
||||
alpha_buffer,
|
||||
rho_buffer,
|
||||
y_buffer,
|
||||
s_buffer,
|
||||
grad_q,
|
||||
alpha_buffer: torch.Tensor,
|
||||
rho_buffer: torch.Tensor,
|
||||
y_buffer: torch.Tensor,
|
||||
s_buffer: torch.Tensor,
|
||||
grad_q: torch.Tensor,
|
||||
m: int,
|
||||
epsilon: float,
|
||||
stable_mode: bool = True,
|
||||
|
||||
@@ -224,15 +224,12 @@ class PoseCost(CostBase, PoseCostConfig):
|
||||
run_weight = self.run_weight
|
||||
|
||||
active_steps = math.floor(self._horizon * run_tstep_fraction)
|
||||
self.initialize_run_weight_vec(self._horizon)
|
||||
self._run_weight_vec[:, :active_steps] = 0
|
||||
self._run_weight_vec[:, active_steps:-1] = run_weight
|
||||
|
||||
def update_batch_size(self, batch_size, horizon):
|
||||
if batch_size != self._batch_size or horizon != self._horizon:
|
||||
# print(self.weight)
|
||||
# print(batch_size, horizon, self._batch_size, self._horizon)
|
||||
|
||||
# batch_size = b*h
|
||||
self.out_distance = torch.zeros(
|
||||
(batch_size, horizon), device=self.tensor_args.device, dtype=self.tensor_args.dtype
|
||||
)
|
||||
@@ -265,16 +262,21 @@ class PoseCost(CostBase, PoseCostConfig):
|
||||
device=self.tensor_args.device,
|
||||
dtype=self.tensor_args.dtype,
|
||||
)
|
||||
if self._run_weight_vec is None or self._run_weight_vec.shape[1] != horizon:
|
||||
self._run_weight_vec = torch.ones(
|
||||
(1, horizon), device=self.tensor_args.device, dtype=self.tensor_args.dtype
|
||||
)
|
||||
self.initialize_run_weight_vec(horizon)
|
||||
if self.terminal and self.run_weight is not None and horizon > 1:
|
||||
self._run_weight_vec[:, :-1] = self.run_weight
|
||||
|
||||
self._batch_size = batch_size
|
||||
self._horizon = horizon
|
||||
|
||||
def initialize_run_weight_vec(self, horizon: Optional[int] = None):
|
||||
if horizon is None:
|
||||
horizon = self._horizon
|
||||
if self._run_weight_vec is None or self._run_weight_vec.shape[1] != horizon:
|
||||
self._run_weight_vec = torch.ones(
|
||||
(1, horizon), device=self.tensor_args.device, dtype=self.tensor_args.dtype
|
||||
)
|
||||
|
||||
@property
|
||||
def goalset_index_buffer(self):
|
||||
return self.out_idx
|
||||
|
||||
Reference in New Issue
Block a user