Significantly improved convergence for mesh and cuboid, new ESDF collision.

This commit is contained in:
Balakumar Sundaralingam
2024-03-18 11:19:48 -07:00
parent 286b3820a5
commit b1f63e8778
100 changed files with 7587 additions and 2589 deletions

View File

@@ -0,0 +1,209 @@
#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import pytest
import torch
# CuRobo
from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel
from curobo.geom.types import PointCloud, WorldConfig
from curobo.types.base import TensorDeviceType
from curobo.types.camera import CameraObservation
from curobo.types.math import Pose
from curobo.types.robot import RobotConfig
from curobo.types.state import JointState
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.model.robot_segmenter import RobotSegmenter
torch.manual_seed(30)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
try:
# Third Party
from nvblox_torch.datasets.mesh_dataset import MeshDataset
except ImportError:
pytest.skip(
"Nvblox Torch is not available or pyrender is not installed", allow_module_level=True
)
def create_render_dataset(
robot_file,
fov_deg: float = 60,
n_frames: int = 20,
retract_delta: float = 0.0,
):
# load robot:
robot_dict = load_yaml(join_path(get_robot_configs_path(), robot_file))
robot_dict["robot_cfg"]["kinematics"]["load_link_names_with_mesh"] = True
robot_dict["robot_cfg"]["kinematics"]["load_meshes"] = True
robot_cfg = RobotConfig.from_dict(robot_dict["robot_cfg"])
kin_model = CudaRobotModel(robot_cfg.kinematics)
q = kin_model.retract_config
q += retract_delta
meshes = kin_model.get_robot_as_mesh(q)
world = WorldConfig(mesh=meshes[:])
world_table = WorldConfig.from_dict(
load_yaml(join_path(get_world_configs_path(), "collision_table.yml"))
)
world_table.cuboid[0].dims = [0.5, 0.5, 0.1]
world.add_obstacle(world_table.objects[0])
robot_mesh = (
WorldConfig.create_merged_mesh_world(world, process_color=False).mesh[0].get_trimesh_mesh()
)
mesh_dataset = MeshDataset(
None,
n_frames=n_frames,
image_size=480,
save_data_dir=None,
trimesh_mesh=robot_mesh,
fov_deg=fov_deg,
)
q_js = JointState(position=q, joint_names=kin_model.joint_names)
return mesh_dataset, q_js
@pytest.mark.parametrize(
"robot_file",
["iiwa.yml", "iiwa_allegro.yml", "franka.yml", "ur10e.yml", "ur5e.yml"],
)
def test_mask_image(robot_file):
# create robot segmenter:
tensor_args = TensorDeviceType()
curobo_segmenter = RobotSegmenter.from_robot_file(
robot_file, collision_sphere_buffer=0.01, distance_threshold=0.05, use_cuda_graph=True
)
mesh_dataset, q_js = create_render_dataset(robot_file, n_frames=5)
for i in range(len(mesh_dataset)):
data = mesh_dataset[i]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]).unsqueeze(0) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
if not curobo_segmenter.ready:
curobo_segmenter.update_camera_projection(cam_obs)
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs,
q_js,
)
if torch.count_nonzero(depth_mask) > 100:
return
assert False
@pytest.mark.parametrize(
"robot_file",
["iiwa.yml", "iiwa_allegro.yml", "franka.yml", "ur10e.yml", "ur5e.yml"],
)
def test_batch_mask_image(robot_file):
# create robot segmenter:
tensor_args = TensorDeviceType()
curobo_segmenter = RobotSegmenter.from_robot_file(
robot_file, collision_sphere_buffer=0.01, distance_threshold=0.05, use_cuda_graph=True
)
mesh_dataset, q_js = create_render_dataset(robot_file, n_frames=5)
mesh_dataset_zoom, q_js = create_render_dataset(robot_file, fov_deg=40, n_frames=5)
for i in range(len(mesh_dataset)):
data = mesh_dataset[i]
data_zoom = mesh_dataset_zoom[i]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
cam_obs_zoom = CameraObservation(
depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000,
intrinsics=data_zoom["intrinsics"],
pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)),
)
cam_obs = cam_obs.stack(cam_obs_zoom)
if not curobo_segmenter.ready:
curobo_segmenter.update_camera_projection(cam_obs)
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs,
q_js,
)
if torch.count_nonzero(depth_mask[0]) > 100 and (torch.count_nonzero(depth_mask[1]) > 100):
return
assert False
@pytest.mark.parametrize(
"robot_file",
["iiwa.yml", "iiwa_allegro.yml", "franka.yml", "ur10e.yml", "ur5e.yml"],
)
def test_batch_robot_mask_image(robot_file):
# create robot segmenter:
tensor_args = TensorDeviceType()
curobo_segmenter = RobotSegmenter.from_robot_file(
robot_file, collision_sphere_buffer=0.01, distance_threshold=0.05, use_cuda_graph=True
)
mesh_dataset, q_js = create_render_dataset(robot_file, n_frames=5)
mesh_dataset_zoom, q_js_zoom = create_render_dataset(
robot_file,
fov_deg=40,
n_frames=5,
retract_delta=0.4,
)
q_js = q_js.unsqueeze(0).stack(q_js_zoom.unsqueeze(0))
for i in range(len(mesh_dataset)):
data = mesh_dataset[i]
data_zoom = mesh_dataset_zoom[i]
cam_obs = CameraObservation(
depth_image=tensor_args.to_device(data["depth"]) * 1000,
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=tensor_args.device)),
)
cam_obs_zoom = CameraObservation(
depth_image=tensor_args.to_device(data_zoom["depth"]) * 1000,
intrinsics=data_zoom["intrinsics"],
pose=Pose.from_matrix(data_zoom["pose"].to(device=tensor_args.device)),
)
cam_obs = cam_obs.stack(cam_obs_zoom)
if not curobo_segmenter.ready:
curobo_segmenter.update_camera_projection(cam_obs)
depth_mask, filtered_image = curobo_segmenter.get_robot_mask_from_active_js(
cam_obs,
q_js,
)
if torch.count_nonzero(depth_mask[0]) > 100 and (torch.count_nonzero(depth_mask[1]) > 100):
return
assert False