Significantly improved convergence for mesh and cuboid, new ESDF collision.
This commit is contained in:
660
benchmark/curobo_voxel_benchmark.py
Normal file
660
benchmark/curobo_voxel_benchmark.py
Normal file
@@ -0,0 +1,660 @@
|
||||
#
|
||||
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
||||
# property and proprietary rights in and to this material, related
|
||||
# documentation and any modifications thereto. Any use, reproduction,
|
||||
# disclosure or distribution of this material and related documentation
|
||||
# without an express license agreement from NVIDIA CORPORATION or
|
||||
# its affiliates is strictly prohibited.
|
||||
#
|
||||
|
||||
# Standard Library
|
||||
import argparse
|
||||
from copy import deepcopy
|
||||
from typing import Optional
|
||||
|
||||
# Third Party
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
from robometrics.datasets import demo_raw, motion_benchmaker_raw, mpinets_raw
|
||||
from tqdm import tqdm
|
||||
|
||||
# CuRobo
|
||||
from curobo.geom.sdf.world import CollisionCheckerType, WorldConfig
|
||||
from curobo.geom.types import Cuboid
|
||||
from curobo.geom.types import Cuboid as curobo_Cuboid
|
||||
from curobo.geom.types import Mesh, VoxelGrid
|
||||
from curobo.types.base import TensorDeviceType
|
||||
from curobo.types.camera import CameraObservation
|
||||
from curobo.types.math import Pose
|
||||
from curobo.types.robot import RobotConfig
|
||||
from curobo.types.state import JointState
|
||||
from curobo.util.logger import setup_curobo_logger
|
||||
from curobo.util.metrics import CuroboGroupMetrics, CuroboMetrics
|
||||
from curobo.util_file import (
|
||||
get_assets_path,
|
||||
get_robot_configs_path,
|
||||
get_world_configs_path,
|
||||
join_path,
|
||||
load_yaml,
|
||||
write_yaml,
|
||||
)
|
||||
from curobo.wrap.model.robot_world import RobotWorld, RobotWorldConfig
|
||||
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
|
||||
def plot_cost_iteration(cost: torch.Tensor, save_path="cost", title="", log_scale=False):
|
||||
fig = plt.figure(figsize=(5, 4))
|
||||
cost = cost.cpu().numpy()
|
||||
# save to csv:
|
||||
np.savetxt(save_path + ".csv", cost, delimiter=",")
|
||||
|
||||
# if cost.shape[0] > 1:
|
||||
colormap = plt.cm.winter
|
||||
plt.gca().set_prop_cycle(plt.cycler("color", colormap(np.linspace(0, 1, cost.shape[0]))))
|
||||
x = [i for i in range(cost.shape[-1])]
|
||||
for i in range(cost.shape[0]):
|
||||
plt.plot(x, cost[i], label="seed_" + str(i))
|
||||
plt.tight_layout()
|
||||
# plt.title(title)
|
||||
plt.xlabel("iteration")
|
||||
plt.ylabel("cost")
|
||||
if log_scale:
|
||||
plt.yscale("log")
|
||||
plt.grid()
|
||||
# plt.legend()
|
||||
plt.tight_layout()
|
||||
plt.savefig(save_path + ".pdf")
|
||||
plt.close()
|
||||
|
||||
|
||||
def plot_traj(act_seq: JointState, dt=0.25, title="", save_path="plot.png", sma_filter=False):
|
||||
fig, ax = plt.subplots(4, 1, figsize=(5, 8), sharex=True)
|
||||
t_steps = np.linspace(0, act_seq.position.shape[0] * dt, act_seq.position.shape[0])
|
||||
|
||||
if sma_filter:
|
||||
kernel = 5
|
||||
sma = torch.nn.AvgPool1d(kernel_size=kernel, stride=1, padding=2, ceil_mode=False).cuda()
|
||||
|
||||
for i in range(act_seq.position.shape[-1]):
|
||||
ax[0].plot(t_steps, act_seq.position[:, i].cpu(), "-", label=str(i))
|
||||
|
||||
ax[1].plot(t_steps[: act_seq.velocity.shape[0]], act_seq.velocity[:, i].cpu(), "-")
|
||||
if sma_filter:
|
||||
act_seq.acceleration[:, i] = sma(
|
||||
act_seq.acceleration[:, i].view(1, -1)
|
||||
).squeeze() # @[1:-2]
|
||||
|
||||
ax[2].plot(t_steps[: act_seq.acceleration.shape[0]], act_seq.acceleration[:, i].cpu(), "-")
|
||||
if sma_filter:
|
||||
act_seq.jerk[:, i] = sma(act_seq.jerk[:, i].view(1, -1)).squeeze() # @[1:-2]\
|
||||
|
||||
ax[3].plot(t_steps[: act_seq.jerk.shape[0]], act_seq.jerk[:, i].cpu(), "-")
|
||||
ax[0].set_title(title + " dt=" + "{:.3f}".format(dt))
|
||||
ax[3].set_xlabel("Time(s)")
|
||||
ax[3].set_ylabel("Jerk rad. s$^{-3}$")
|
||||
ax[0].set_ylabel("Position rad.")
|
||||
ax[1].set_ylabel("Velocity rad. s$^{-1}$")
|
||||
ax[2].set_ylabel("Acceleration rad. s$^{-2}$")
|
||||
ax[0].grid()
|
||||
ax[1].grid()
|
||||
ax[2].grid()
|
||||
ax[3].grid()
|
||||
ax[0].legend(bbox_to_anchor=(0.5, 1.6), loc="upper center", ncol=4)
|
||||
plt.tight_layout()
|
||||
plt.savefig(save_path)
|
||||
plt.close()
|
||||
|
||||
|
||||
def load_curobo(
|
||||
n_cubes: int,
|
||||
enable_debug: bool = False,
|
||||
tsteps: int = 30,
|
||||
trajopt_seeds: int = 4,
|
||||
mpinets: bool = False,
|
||||
graph_mode: bool = False,
|
||||
cuda_graph: bool = True,
|
||||
collision_activation_distance: float = 0.025,
|
||||
finetune_dt_scale: float = 1.0,
|
||||
parallel_finetune: bool = True,
|
||||
args=None,
|
||||
):
|
||||
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
|
||||
robot_cfg["kinematics"]["collision_sphere_buffer"] = -0.00
|
||||
|
||||
ik_seeds = 24
|
||||
if graph_mode:
|
||||
trajopt_seeds = 4
|
||||
if trajopt_seeds >= 14:
|
||||
ik_seeds = max(100, trajopt_seeds * 2)
|
||||
if mpinets:
|
||||
robot_cfg["kinematics"]["lock_joints"] = {
|
||||
"panda_finger_joint1": 0.025,
|
||||
"panda_finger_joint2": 0.025,
|
||||
}
|
||||
world_cfg = WorldConfig.from_dict(
|
||||
{
|
||||
"voxel": {
|
||||
"base": {
|
||||
"dims": [2.4, 2.4, 2.4],
|
||||
"pose": [0, 0, 0, 1, 0, 0, 0],
|
||||
"voxel_size": 0.005,
|
||||
"feature_dtype": torch.bfloat16,
|
||||
},
|
||||
}
|
||||
}
|
||||
)
|
||||
interpolation_steps = 2000
|
||||
if graph_mode:
|
||||
interpolation_steps = 100
|
||||
robot_cfg_instance = RobotConfig.from_dict(robot_cfg, tensor_args=TensorDeviceType())
|
||||
K = robot_cfg_instance.kinematics.kinematics_config.joint_limits
|
||||
K.position[0, :] -= 0.2
|
||||
K.position[1, :] += 0.2
|
||||
|
||||
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
||||
robot_cfg_instance,
|
||||
world_cfg,
|
||||
trajopt_tsteps=tsteps,
|
||||
collision_checker_type=CollisionCheckerType.VOXEL,
|
||||
use_cuda_graph=cuda_graph,
|
||||
position_threshold=0.005, # 0.5 cm
|
||||
rotation_threshold=0.05,
|
||||
num_ik_seeds=ik_seeds,
|
||||
num_graph_seeds=trajopt_seeds,
|
||||
num_trajopt_seeds=trajopt_seeds,
|
||||
interpolation_dt=0.025,
|
||||
store_ik_debug=enable_debug,
|
||||
store_trajopt_debug=enable_debug,
|
||||
interpolation_steps=interpolation_steps,
|
||||
collision_activation_distance=collision_activation_distance,
|
||||
trajopt_dt=0.25,
|
||||
finetune_dt_scale=finetune_dt_scale,
|
||||
maximum_trajectory_dt=0.15,
|
||||
finetune_trajopt_iters=200,
|
||||
)
|
||||
mg = MotionGen(motion_gen_config)
|
||||
mg.warmup(enable_graph=True, warmup_js_trajopt=False, parallel_finetune=True)
|
||||
# create a ground truth collision checker:
|
||||
world_model = WorldConfig.from_dict(
|
||||
{
|
||||
"cuboid": {
|
||||
"table": {
|
||||
"dims": [1, 1, 1],
|
||||
"pose": [0, 0, 0, 1, 0, 0, 0],
|
||||
}
|
||||
}
|
||||
}
|
||||
)
|
||||
if args.mesh:
|
||||
world_model = world_model.get_mesh_world()
|
||||
config = RobotWorldConfig.load_from_config(
|
||||
robot_cfg_instance,
|
||||
world_model,
|
||||
collision_activation_distance=0.0,
|
||||
collision_checker_type=CollisionCheckerType.MESH,
|
||||
n_cuboids=50,
|
||||
n_meshes=50,
|
||||
max_collision_distance=100.0,
|
||||
)
|
||||
robot_world = RobotWorld(config)
|
||||
|
||||
return mg, robot_cfg, robot_world
|
||||
|
||||
|
||||
def benchmark_mb(
|
||||
write_usd=False,
|
||||
save_log=False,
|
||||
write_plot=False,
|
||||
write_benchmark=False,
|
||||
plot_cost=False,
|
||||
override_tsteps: Optional[int] = None,
|
||||
args=None,
|
||||
):
|
||||
# load dataset:
|
||||
graph_mode = args.graph
|
||||
interpolation_dt = 0.02
|
||||
file_paths = [demo_raw, motion_benchmaker_raw, mpinets_raw][1:]
|
||||
|
||||
enable_debug = save_log or plot_cost
|
||||
all_files = []
|
||||
og_tsteps = 32
|
||||
if override_tsteps is not None:
|
||||
og_tsteps = override_tsteps
|
||||
|
||||
og_trajopt_seeds = 4
|
||||
og_collision_activation_distance = 0.01
|
||||
if args.graph:
|
||||
og_trajopt_seeds = 4
|
||||
for file_path in file_paths:
|
||||
all_groups = []
|
||||
mpinets_data = False
|
||||
problems = file_path()
|
||||
if "dresser_task_oriented" in list(problems.keys()):
|
||||
mpinets_data = True
|
||||
for key, v in tqdm(problems.items()):
|
||||
scene_problems = problems[key]
|
||||
m_list = []
|
||||
i = -1
|
||||
ik_fail = 0
|
||||
trajopt_seeds = og_trajopt_seeds
|
||||
tsteps = og_tsteps
|
||||
collision_activation_distance = og_collision_activation_distance
|
||||
finetune_dt_scale = 0.9
|
||||
parallel_finetune = True
|
||||
if "cage_panda" in key:
|
||||
trajopt_seeds = 8
|
||||
|
||||
if "table_under_pick_panda" in key:
|
||||
trajopt_seeds = 8
|
||||
finetune_dt_scale = 0.98
|
||||
|
||||
if key == "cubby_task_oriented":
|
||||
trajopt_seeds = 16
|
||||
finetune_dt_scale = 0.98
|
||||
|
||||
if "dresser_task_oriented" in key:
|
||||
trajopt_seeds = 16
|
||||
finetune_dt_scale = 0.98
|
||||
|
||||
mg, robot_cfg, robot_world = load_curobo(
|
||||
0,
|
||||
enable_debug,
|
||||
tsteps,
|
||||
trajopt_seeds,
|
||||
mpinets_data,
|
||||
graph_mode,
|
||||
not args.disable_cuda_graph,
|
||||
collision_activation_distance=collision_activation_distance,
|
||||
finetune_dt_scale=finetune_dt_scale,
|
||||
parallel_finetune=parallel_finetune,
|
||||
args=args,
|
||||
)
|
||||
for problem in tqdm(scene_problems, leave=False):
|
||||
i += 1
|
||||
if problem["collision_buffer_ik"] < 0.0:
|
||||
continue
|
||||
|
||||
plan_config = MotionGenPlanConfig(
|
||||
max_attempts=10,
|
||||
enable_graph_attempt=1,
|
||||
enable_finetune_trajopt=True,
|
||||
partial_ik_opt=False,
|
||||
enable_graph=graph_mode,
|
||||
timeout=60,
|
||||
enable_opt=not graph_mode,
|
||||
parallel_finetune=True,
|
||||
)
|
||||
|
||||
q_start = problem["start"]
|
||||
pose = (
|
||||
problem["goal_pose"]["position_xyz"] + problem["goal_pose"]["quaternion_wxyz"]
|
||||
)
|
||||
|
||||
problem_name = key + "_" + str(i)
|
||||
if args.mesh:
|
||||
problem_name = "mesh_" + problem_name
|
||||
# reset planner
|
||||
mg.reset(reset_seed=False)
|
||||
world = WorldConfig.from_dict(problem["obstacles"])
|
||||
|
||||
# mg.world_coll_checker.clear_cache()
|
||||
world_coll = WorldConfig.from_dict(problem["obstacles"])
|
||||
if args.mesh:
|
||||
world_coll = world_coll.get_mesh_world(merge_meshes=False)
|
||||
robot_world.clear_world_cache()
|
||||
robot_world.update_world(world_coll)
|
||||
|
||||
esdf = robot_world.world_model.get_esdf_in_bounding_box(
|
||||
Cuboid(name="base", pose=[0, 0, 0, 1, 0, 0, 0], dims=[2.4, 2.4, 2.4]),
|
||||
voxel_size=0.005,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
world_voxel_collision = mg.world_coll_checker
|
||||
world_voxel_collision.update_voxel_data(esdf)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
|
||||
start_state = JointState.from_position(mg.tensor_args.to_device([q_start]))
|
||||
if i == 0:
|
||||
for _ in range(3):
|
||||
result = mg.plan_single(
|
||||
start_state,
|
||||
Pose.from_list(pose),
|
||||
plan_config,
|
||||
)
|
||||
result = mg.plan_single(
|
||||
start_state,
|
||||
Pose.from_list(pose),
|
||||
plan_config,
|
||||
)
|
||||
# if not result.success.item():
|
||||
# world = write_yaml(problem["obstacles"], "dresser_task.yml")
|
||||
# exit()
|
||||
|
||||
# print(result.total_time, result.ik_time, result.trajopt_time, result.finetune_time)
|
||||
if result.status == "IK Fail":
|
||||
ik_fail += 1
|
||||
problem["solution"] = None
|
||||
if save_log or write_usd:
|
||||
world.randomize_color(r=[0.5, 0.9], g=[0.2, 0.5], b=[0.0, 0.2])
|
||||
|
||||
coll_mesh = mg.world_coll_checker.get_mesh_in_bounding_box(
|
||||
curobo_Cuboid(name="test", pose=[0, 0, 0, 1, 0, 0, 0], dims=[2, 2, 2]),
|
||||
voxel_size=0.005,
|
||||
)
|
||||
|
||||
coll_mesh.color = [0.0, 0.8, 0.8, 0.2]
|
||||
|
||||
coll_mesh.name = "voxel_world"
|
||||
# world = WorldConfig(mesh=[coll_mesh])
|
||||
world.add_obstacle(coll_mesh)
|
||||
# get costs:
|
||||
if plot_cost:
|
||||
dt = 0.5
|
||||
problem_name = "approx_wolfe_p" + problem_name
|
||||
if result.optimized_dt is not None:
|
||||
dt = result.optimized_dt.item()
|
||||
if "trajopt_result" in result.debug_info:
|
||||
success = result.success.item()
|
||||
traj_cost = result.debug_info["trajopt_result"].debug_info["solver"][
|
||||
"cost"
|
||||
][-1]
|
||||
traj_cost = torch.cat(traj_cost, dim=-1)
|
||||
plot_cost_iteration(
|
||||
traj_cost,
|
||||
title=problem_name + "_" + str(success) + "_" + str(dt),
|
||||
save_path=join_path("benchmark/log/plot/", problem_name + "_cost"),
|
||||
log_scale=False,
|
||||
)
|
||||
if "finetune_trajopt_result" in result.debug_info:
|
||||
traj_cost = result.debug_info["finetune_trajopt_result"].debug_info[
|
||||
"solver"
|
||||
]["cost"][0]
|
||||
traj_cost = torch.cat(traj_cost, dim=-1)
|
||||
plot_cost_iteration(
|
||||
traj_cost,
|
||||
title=problem_name + "_" + str(success) + "_" + str(dt),
|
||||
save_path=join_path(
|
||||
"benchmark/log/plot/", problem_name + "_ft_cost"
|
||||
),
|
||||
log_scale=False,
|
||||
)
|
||||
if result.success.item():
|
||||
q_traj = result.get_interpolated_plan()
|
||||
problem["goal_ik"] = q_traj.position.cpu().squeeze().numpy()[-1, :].tolist()
|
||||
problem["solution"] = {
|
||||
"position": result.get_interpolated_plan()
|
||||
.position.cpu()
|
||||
.squeeze()
|
||||
.numpy()
|
||||
.tolist(),
|
||||
"velocity": result.get_interpolated_plan()
|
||||
.velocity.cpu()
|
||||
.squeeze()
|
||||
.numpy()
|
||||
.tolist(),
|
||||
"acceleration": result.get_interpolated_plan()
|
||||
.acceleration.cpu()
|
||||
.squeeze()
|
||||
.numpy()
|
||||
.tolist(),
|
||||
"jerk": result.get_interpolated_plan()
|
||||
.jerk.cpu()
|
||||
.squeeze()
|
||||
.numpy()
|
||||
.tolist(),
|
||||
"dt": interpolation_dt,
|
||||
}
|
||||
debug = {
|
||||
"used_graph": result.used_graph,
|
||||
"attempts": result.attempts,
|
||||
"ik_time": result.ik_time,
|
||||
"graph_time": result.graph_time,
|
||||
"trajopt_time": result.trajopt_time,
|
||||
"total_time": result.total_time,
|
||||
"solve_time": result.solve_time,
|
||||
"opt_traj": {
|
||||
"position": result.optimized_plan.position.cpu()
|
||||
.squeeze()
|
||||
.numpy()
|
||||
.tolist(),
|
||||
"velocity": result.optimized_plan.velocity.cpu()
|
||||
.squeeze()
|
||||
.numpy()
|
||||
.tolist(),
|
||||
"acceleration": result.optimized_plan.acceleration.cpu()
|
||||
.squeeze()
|
||||
.numpy()
|
||||
.tolist(),
|
||||
"jerk": result.optimized_plan.jerk.cpu().squeeze().numpy().tolist(),
|
||||
"dt": result.optimized_dt.item(),
|
||||
},
|
||||
"valid_query": result.valid_query,
|
||||
}
|
||||
problem["solution_debug"] = debug
|
||||
|
||||
# check if path is collision free w.r.t. ground truth mesh:
|
||||
# robot_world.world_model.clear_cache()
|
||||
|
||||
q_int_traj = result.get_interpolated_plan().position.unsqueeze(0)
|
||||
d_int_mask = (
|
||||
torch.count_nonzero(~robot_world.validate_trajectory(q_int_traj)) == 0
|
||||
).item()
|
||||
|
||||
q_traj = result.optimized_plan.position.unsqueeze(0)
|
||||
d_mask = (
|
||||
torch.count_nonzero(~robot_world.validate_trajectory(q_traj)) == 0
|
||||
).item()
|
||||
# d_world, _ = robot_world.get_world_self_collision_distance_from_joint_trajectory(
|
||||
# q_traj)
|
||||
# thres_dist = robot_world.contact_distance
|
||||
# in_collision = d_world.squeeze(0) > thres_dist
|
||||
# d_mask = not torch.any(in_collision, dim=-1).item()
|
||||
# if not d_mask:
|
||||
# write_usd = True
|
||||
# #print(torch.max(d_world).item(), problem_name)
|
||||
current_metrics = CuroboMetrics(
|
||||
skip=False,
|
||||
success=True,
|
||||
perception_success=d_mask,
|
||||
perception_interpolated_success=d_int_mask,
|
||||
time=result.total_time,
|
||||
collision=False,
|
||||
joint_limit_violation=False,
|
||||
self_collision=False,
|
||||
position_error=result.position_error.item() * 100.0,
|
||||
orientation_error=result.rotation_error.item() * 100.0,
|
||||
eef_position_path_length=10,
|
||||
eef_orientation_path_length=10,
|
||||
attempts=result.attempts,
|
||||
motion_time=result.motion_time.item(),
|
||||
solve_time=result.solve_time,
|
||||
jerk=torch.max(torch.abs(result.optimized_plan.jerk)).item(),
|
||||
)
|
||||
|
||||
# run planner
|
||||
if write_usd: # and not d_int_mask:
|
||||
# CuRobo
|
||||
from curobo.util.usd_helper import UsdHelper
|
||||
|
||||
q_traj = result.get_interpolated_plan()
|
||||
UsdHelper.write_trajectory_animation_with_robot_usd(
|
||||
robot_cfg,
|
||||
world,
|
||||
start_state,
|
||||
q_traj,
|
||||
dt=result.interpolation_dt,
|
||||
save_path=join_path("benchmark/log/usd/", problem_name) + ".usd",
|
||||
interpolation_steps=1,
|
||||
write_robot_usd_path="benchmark/log/usd/assets/",
|
||||
robot_usd_local_reference="assets/",
|
||||
base_frame="/world_" + problem_name,
|
||||
visualize_robot_spheres=True,
|
||||
# flatten_usd=True,
|
||||
)
|
||||
# write_usd = False
|
||||
# exit()
|
||||
if write_plot:
|
||||
problem_name = problem_name
|
||||
plot_traj(
|
||||
result.optimized_plan,
|
||||
result.optimized_dt.item(),
|
||||
# result.get_interpolated_plan(),
|
||||
# result.interpolation_dt,
|
||||
title=problem_name,
|
||||
save_path=join_path("benchmark/log/plot/", problem_name + ".pdf"),
|
||||
)
|
||||
plot_traj(
|
||||
# result.optimized_plan,
|
||||
# result.optimized_dt.item(),
|
||||
result.get_interpolated_plan(),
|
||||
result.interpolation_dt,
|
||||
title=problem_name,
|
||||
save_path=join_path("benchmark/log/plot/", problem_name + "_int.pdf"),
|
||||
)
|
||||
|
||||
m_list.append(current_metrics)
|
||||
all_groups.append(current_metrics)
|
||||
elif result.valid_query:
|
||||
current_metrics = CuroboMetrics()
|
||||
debug = {
|
||||
"used_graph": result.used_graph,
|
||||
"attempts": result.attempts,
|
||||
"ik_time": result.ik_time,
|
||||
"graph_time": result.graph_time,
|
||||
"trajopt_time": result.trajopt_time,
|
||||
"total_time": result.total_time,
|
||||
"solve_time": result.solve_time,
|
||||
"status": result.status,
|
||||
"valid_query": result.valid_query,
|
||||
}
|
||||
problem["solution_debug"] = debug
|
||||
|
||||
m_list.append(current_metrics)
|
||||
all_groups.append(current_metrics)
|
||||
else:
|
||||
# print("invalid: " + problem_name)
|
||||
debug = {
|
||||
"used_graph": result.used_graph,
|
||||
"attempts": result.attempts,
|
||||
"ik_time": result.ik_time,
|
||||
"graph_time": result.graph_time,
|
||||
"trajopt_time": result.trajopt_time,
|
||||
"total_time": result.total_time,
|
||||
"solve_time": result.solve_time,
|
||||
"status": result.status,
|
||||
"valid_query": result.valid_query,
|
||||
}
|
||||
problem["solution_debug"] = debug
|
||||
if save_log: # and not result.success.item():
|
||||
# CuRobo
|
||||
from curobo.util.usd_helper import UsdHelper
|
||||
|
||||
UsdHelper.write_motion_gen_log(
|
||||
result,
|
||||
robot_cfg,
|
||||
world,
|
||||
start_state,
|
||||
Pose.from_list(pose),
|
||||
join_path("benchmark/log/usd/", problem_name) + "_debug",
|
||||
write_ik=True,
|
||||
write_trajopt=True,
|
||||
visualize_robot_spheres=True,
|
||||
grid_space=2,
|
||||
# flatten_usd=True,
|
||||
)
|
||||
exit()
|
||||
g_m = CuroboGroupMetrics.from_list(m_list)
|
||||
print(
|
||||
key,
|
||||
f"{g_m.success:2.2f}",
|
||||
g_m.time.mean,
|
||||
# g_m.time.percent_75,
|
||||
g_m.time.percent_98,
|
||||
g_m.position_error.percent_98,
|
||||
# g_m.position_error.median,
|
||||
g_m.orientation_error.percent_98,
|
||||
g_m.cspace_path_length.percent_98,
|
||||
g_m.motion_time.percent_98,
|
||||
g_m.perception_interpolated_success,
|
||||
# g_m.orientation_error.median,
|
||||
)
|
||||
print(g_m.attempts)
|
||||
g_m = CuroboGroupMetrics.from_list(all_groups)
|
||||
print(
|
||||
"All: ",
|
||||
f"{g_m.success:2.2f}",
|
||||
g_m.motion_time.percent_98,
|
||||
g_m.time.mean,
|
||||
g_m.time.percent_75,
|
||||
g_m.position_error.percent_75,
|
||||
g_m.orientation_error.percent_75,
|
||||
g_m.perception_success,
|
||||
)
|
||||
print(g_m.attempts)
|
||||
if write_benchmark:
|
||||
if not mpinets_data:
|
||||
write_yaml(problems, "mb_curobo_solution_voxel.yaml")
|
||||
else:
|
||||
write_yaml(problems, "mpinets_curobo_solution_voxel.yaml")
|
||||
all_files += all_groups
|
||||
g_m = CuroboGroupMetrics.from_list(all_files)
|
||||
print("######## FULL SET ############")
|
||||
print("All: ", f"{g_m.success:2.2f}")
|
||||
print(
|
||||
"Perception Success (coarse, interpolated):",
|
||||
g_m.perception_success,
|
||||
g_m.perception_interpolated_success,
|
||||
)
|
||||
print("MT: ", g_m.motion_time)
|
||||
print("PT:", g_m.time)
|
||||
print("ST: ", g_m.solve_time)
|
||||
print("accuracy: ", g_m.position_error, g_m.orientation_error)
|
||||
print("Jerk: ", g_m.jerk)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
setup_curobo_logger("error")
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--mesh",
|
||||
action="store_true",
|
||||
help="When True, runs only geometric planner",
|
||||
default=False,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--graph",
|
||||
action="store_true",
|
||||
help="When True, runs only geometric planner",
|
||||
default=False,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--disable_cuda_graph",
|
||||
action="store_true",
|
||||
help="When True, disable cuda graph during benchmarking",
|
||||
default=False,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
benchmark_mb(
|
||||
save_log=False,
|
||||
write_usd=False,
|
||||
write_plot=False,
|
||||
write_benchmark=False,
|
||||
plot_cost=False,
|
||||
args=args,
|
||||
)
|
||||
Reference in New Issue
Block a user