Fix trajectory evaluation

Remove unused imports
This commit is contained in:
scharalambous-sony
2024-04-29 11:13:17 +02:00
parent 1e0b5a80c2
commit 9c087a0dd2
2 changed files with 63 additions and 2 deletions

View File

@@ -218,12 +218,13 @@ def compute_smoothness(
scale_dt = (1 / dt_score).view(-1, 1, 1) scale_dt = (1 / dt_score).view(-1, 1, 1)
abs_acc = torch.abs(acc) * (scale_dt**2) abs_acc = torch.abs(acc) * (scale_dt**2)
# mean_acc_val = torch.max(torch.mean(abs_acc, dim=-1), dim=-1)[0] # mean_acc_val = torch.max(torch.mean(abs_acc, dim=-1), dim=-1)[0]
max_acc_val = torch.max(torch.max(abs_acc, dim=-1)[0], dim=-1)[0] max_acc_val = torch.max(abs_acc, dim=-2)[0] # batch x dof
abs_jerk = torch.abs(jerk) * scale_dt**3 abs_jerk = torch.abs(jerk) * scale_dt**3
# calculate max mean jerk: # calculate max mean jerk:
# mean_jerk_val = torch.max(torch.mean(abs_jerk, dim=-1), dim=-1)[0] # mean_jerk_val = torch.max(torch.mean(abs_jerk, dim=-1), dim=-1)[0]
max_jerk_val = torch.max(torch.max(abs_jerk, dim=-1)[0], dim=-1)[0] max_jerk_val = torch.max(abs_jerk, dim=-2)[0] # batch x dof
acc_label = torch.logical_and(max_acc_val <= max_acc, max_jerk_val <= max_jerk) acc_label = torch.logical_and(max_acc_val <= max_acc, max_jerk_val <= max_jerk)
acc_label = torch.all(acc_label, dim=-1)
return (acc_label, smooth_cost(abs_acc, abs_jerk, dt_score)) return (acc_label, smooth_cost(abs_acc, abs_jerk, dt_score))

View File

@@ -0,0 +1,60 @@
#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import pytest
import torch
# CuRobo
from curobo.types.base import TensorDeviceType
from curobo.types.robot import JointState
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
from curobo.wrap.reacher.evaluator import TrajEvaluatorConfig
@pytest.fixture(scope="module", params=[True, False])
def evaluate_interpolated_trajectory(request):
return request.param
@pytest.fixture(scope="module")
def motion_gen(evaluate_interpolated_trajectory):
tensor_args = TensorDeviceType()
world_file = "collision_test.yml"
robot_file = "franka.yml"
dof = 9
traj_evaluator_config = TrajEvaluatorConfig(
max_acc=torch.ones((dof), device=tensor_args.device, dtype=tensor_args.dtype),
max_jerk=torch.ones((dof), device=tensor_args.device, dtype=tensor_args.dtype),
min_dt=torch.tensor(0.01, device=tensor_args.device, dtype=tensor_args.dtype),
max_dt=torch.tensor(1.5, device=tensor_args.device, dtype=tensor_args.dtype)
)
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
trajopt_tsteps=26,
use_cuda_graph=False,
num_trajopt_seeds=50,
fixed_iters_trajopt=True,
evaluate_interpolated_trajectory=evaluate_interpolated_trajectory,
traj_evaluator_config=traj_evaluator_config,
)
motion_gen = MotionGen(motion_gen_config)
motion_gen.warmup(warmup_js_trajopt=True)
retract_cfg = motion_gen.get_retract_config()
start_state = JointState.from_position(retract_cfg.view(1, -1).clone())
goal_state = JointState.from_position(retract_cfg.view(1, -1).clone())
result = motion_gen.plan_single_js(start_state, goal_state, MotionGenPlanConfig(max_attempts=1))
def test_motion_gen(motion_gen):
return True