Fix trajectory evaluation
Remove unused imports
This commit is contained in:
@@ -218,12 +218,13 @@ def compute_smoothness(
|
|||||||
scale_dt = (1 / dt_score).view(-1, 1, 1)
|
scale_dt = (1 / dt_score).view(-1, 1, 1)
|
||||||
abs_acc = torch.abs(acc) * (scale_dt**2)
|
abs_acc = torch.abs(acc) * (scale_dt**2)
|
||||||
# mean_acc_val = torch.max(torch.mean(abs_acc, dim=-1), dim=-1)[0]
|
# mean_acc_val = torch.max(torch.mean(abs_acc, dim=-1), dim=-1)[0]
|
||||||
max_acc_val = torch.max(torch.max(abs_acc, dim=-1)[0], dim=-1)[0]
|
max_acc_val = torch.max(abs_acc, dim=-2)[0] # batch x dof
|
||||||
abs_jerk = torch.abs(jerk) * scale_dt**3
|
abs_jerk = torch.abs(jerk) * scale_dt**3
|
||||||
# calculate max mean jerk:
|
# calculate max mean jerk:
|
||||||
# mean_jerk_val = torch.max(torch.mean(abs_jerk, dim=-1), dim=-1)[0]
|
# mean_jerk_val = torch.max(torch.mean(abs_jerk, dim=-1), dim=-1)[0]
|
||||||
max_jerk_val = torch.max(torch.max(abs_jerk, dim=-1)[0], dim=-1)[0]
|
max_jerk_val = torch.max(abs_jerk, dim=-2)[0] # batch x dof
|
||||||
acc_label = torch.logical_and(max_acc_val <= max_acc, max_jerk_val <= max_jerk)
|
acc_label = torch.logical_and(max_acc_val <= max_acc, max_jerk_val <= max_jerk)
|
||||||
|
acc_label = torch.all(acc_label, dim=-1)
|
||||||
return (acc_label, smooth_cost(abs_acc, abs_jerk, dt_score))
|
return (acc_label, smooth_cost(abs_acc, abs_jerk, dt_score))
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
60
tests/motion_gen_eval_test.py
Normal file
60
tests/motion_gen_eval_test.py
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
#
|
||||||
|
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||||
|
#
|
||||||
|
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
||||||
|
# property and proprietary rights in and to this material, related
|
||||||
|
# documentation and any modifications thereto. Any use, reproduction,
|
||||||
|
# disclosure or distribution of this material and related documentation
|
||||||
|
# without an express license agreement from NVIDIA CORPORATION or
|
||||||
|
# its affiliates is strictly prohibited.
|
||||||
|
#
|
||||||
|
|
||||||
|
# Third Party
|
||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# CuRobo
|
||||||
|
from curobo.types.base import TensorDeviceType
|
||||||
|
from curobo.types.robot import JointState
|
||||||
|
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
||||||
|
from curobo.wrap.reacher.evaluator import TrajEvaluatorConfig
|
||||||
|
|
||||||
|
@pytest.fixture(scope="module", params=[True, False])
|
||||||
|
def evaluate_interpolated_trajectory(request):
|
||||||
|
return request.param
|
||||||
|
|
||||||
|
@pytest.fixture(scope="module")
|
||||||
|
def motion_gen(evaluate_interpolated_trajectory):
|
||||||
|
tensor_args = TensorDeviceType()
|
||||||
|
world_file = "collision_test.yml"
|
||||||
|
robot_file = "franka.yml"
|
||||||
|
dof = 9
|
||||||
|
traj_evaluator_config = TrajEvaluatorConfig(
|
||||||
|
max_acc=torch.ones((dof), device=tensor_args.device, dtype=tensor_args.dtype),
|
||||||
|
max_jerk=torch.ones((dof), device=tensor_args.device, dtype=tensor_args.dtype),
|
||||||
|
min_dt=torch.tensor(0.01, device=tensor_args.device, dtype=tensor_args.dtype),
|
||||||
|
max_dt=torch.tensor(1.5, device=tensor_args.device, dtype=tensor_args.dtype)
|
||||||
|
)
|
||||||
|
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
||||||
|
robot_file,
|
||||||
|
world_file,
|
||||||
|
tensor_args,
|
||||||
|
trajopt_tsteps=26,
|
||||||
|
use_cuda_graph=False,
|
||||||
|
num_trajopt_seeds=50,
|
||||||
|
fixed_iters_trajopt=True,
|
||||||
|
evaluate_interpolated_trajectory=evaluate_interpolated_trajectory,
|
||||||
|
traj_evaluator_config=traj_evaluator_config,
|
||||||
|
)
|
||||||
|
motion_gen = MotionGen(motion_gen_config)
|
||||||
|
motion_gen.warmup(warmup_js_trajopt=True)
|
||||||
|
|
||||||
|
retract_cfg = motion_gen.get_retract_config()
|
||||||
|
|
||||||
|
start_state = JointState.from_position(retract_cfg.view(1, -1).clone())
|
||||||
|
goal_state = JointState.from_position(retract_cfg.view(1, -1).clone())
|
||||||
|
|
||||||
|
result = motion_gen.plan_single_js(start_state, goal_state, MotionGenPlanConfig(max_attempts=1))
|
||||||
|
|
||||||
|
def test_motion_gen(motion_gen):
|
||||||
|
return True
|
||||||
Reference in New Issue
Block a user