Add re-timing, minimum dt robustness
This commit is contained in:
@@ -57,15 +57,15 @@ def trajopt_solver_batch_env():
|
||||
robot_cfg = RobotConfig.from_dict(
|
||||
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
||||
)
|
||||
# world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
|
||||
|
||||
trajopt_config = TrajOptSolverConfig.load_from_robot_config(
|
||||
robot_cfg,
|
||||
world_cfg,
|
||||
tensor_args,
|
||||
use_cuda_graph=False,
|
||||
num_seeds=10,
|
||||
num_seeds=4,
|
||||
evaluate_interpolated_trajectory=True,
|
||||
grad_trajopt_iters=200,
|
||||
)
|
||||
trajopt_solver = TrajOptSolver(trajopt_config)
|
||||
|
||||
@@ -73,7 +73,7 @@ def trajopt_solver_batch_env():
|
||||
|
||||
|
||||
def test_trajopt_single_js(trajopt_solver):
|
||||
q_start = trajopt_solver.retract_config
|
||||
q_start = trajopt_solver.retract_config.clone()
|
||||
q_goal = q_start.clone() + 0.2
|
||||
goal_state = JointState.from_position(q_goal)
|
||||
current_state = JointState.from_position(q_start)
|
||||
@@ -88,7 +88,7 @@ def test_trajopt_single_js(trajopt_solver):
|
||||
|
||||
def test_trajopt_single_pose(trajopt_solver):
|
||||
trajopt_solver.reset_seed()
|
||||
q_start = trajopt_solver.retract_config
|
||||
q_start = trajopt_solver.retract_config.clone()
|
||||
q_goal = q_start.clone() + 0.1
|
||||
kin_state = trajopt_solver.fk(q_goal)
|
||||
goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion)
|
||||
@@ -102,7 +102,7 @@ def test_trajopt_single_pose(trajopt_solver):
|
||||
|
||||
def test_trajopt_single_pose_no_seed(trajopt_solver):
|
||||
trajopt_solver.reset_seed()
|
||||
q_start = trajopt_solver.retract_config
|
||||
q_start = trajopt_solver.retract_config.clone()
|
||||
q_goal = q_start.clone() + 0.05
|
||||
kin_state = trajopt_solver.fk(q_goal)
|
||||
goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion)
|
||||
@@ -116,7 +116,7 @@ def test_trajopt_single_pose_no_seed(trajopt_solver):
|
||||
|
||||
def test_trajopt_single_goalset(trajopt_solver):
|
||||
# run goalset planning:
|
||||
q_start = trajopt_solver.retract_config
|
||||
q_start = trajopt_solver.retract_config.clone()
|
||||
q_goal = q_start.clone() + 0.1
|
||||
kin_state = trajopt_solver.fk(q_goal)
|
||||
goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion)
|
||||
@@ -133,7 +133,7 @@ def test_trajopt_single_goalset(trajopt_solver):
|
||||
|
||||
def test_trajopt_batch(trajopt_solver):
|
||||
# run goalset planning:
|
||||
q_start = trajopt_solver.retract_config.repeat(2, 1)
|
||||
q_start = trajopt_solver.retract_config.clone().repeat(2, 1)
|
||||
q_goal = q_start.clone()
|
||||
q_goal[0] += 0.1
|
||||
q_goal[1] -= 0.1
|
||||
@@ -153,7 +153,7 @@ def test_trajopt_batch(trajopt_solver):
|
||||
|
||||
def test_trajopt_batch_js(trajopt_solver):
|
||||
# run goalset planning:
|
||||
q_start = trajopt_solver.retract_config.repeat(2, 1)
|
||||
q_start = trajopt_solver.retract_config.clone().repeat(2, 1)
|
||||
q_goal = q_start.clone()
|
||||
q_goal[0] += 0.1
|
||||
q_goal[1] -= 0.1
|
||||
@@ -173,7 +173,7 @@ def test_trajopt_batch_js(trajopt_solver):
|
||||
|
||||
def test_trajopt_batch_goalset(trajopt_solver):
|
||||
# run goalset planning:
|
||||
q_start = trajopt_solver.retract_config.repeat(3, 1)
|
||||
q_start = trajopt_solver.retract_config.clone().repeat(3, 1)
|
||||
q_goal = q_start.clone()
|
||||
q_goal[0] += 0.1
|
||||
q_goal[1] -= 0.1
|
||||
@@ -196,14 +196,12 @@ def test_trajopt_batch_goalset(trajopt_solver):
|
||||
|
||||
def test_trajopt_batch_env_js(trajopt_solver_batch_env):
|
||||
# run goalset planning:
|
||||
q_start = trajopt_solver_batch_env.retract_config.repeat(3, 1)
|
||||
q_start = trajopt_solver_batch_env.retract_config.clone().repeat(3, 1)
|
||||
q_goal = q_start.clone()
|
||||
q_goal += 0.1
|
||||
q_goal[2] += 0.1
|
||||
q_goal[2][0] += 0.1
|
||||
q_goal[1] -= 0.2
|
||||
# q_goal[2, -1] += 0.1
|
||||
kin_state = trajopt_solver_batch_env.fk(q_goal)
|
||||
goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion)
|
||||
goal_state = JointState.from_position(q_goal)
|
||||
current_state = JointState.from_position(q_start)
|
||||
|
||||
@@ -213,14 +211,15 @@ def test_trajopt_batch_env_js(trajopt_solver_batch_env):
|
||||
traj = result.solution.position
|
||||
interpolated_traj = result.interpolated_solution.position
|
||||
assert torch.count_nonzero(result.success) == 3
|
||||
assert torch.linalg.norm((goal_state.position - traj[:, -1, :])).item() < 0.005
|
||||
assert torch.linalg.norm((goal_state.position - interpolated_traj[:, -1, :])).item() < 0.005
|
||||
error = torch.linalg.norm((goal_state.position - traj[:, -1, :]), dim=-1)
|
||||
assert torch.max(error).item() < 0.05
|
||||
assert torch.linalg.norm((goal_state.position - interpolated_traj[:, -1, :])).item() < 0.05
|
||||
assert len(result) == 3
|
||||
|
||||
|
||||
def test_trajopt_batch_env(trajopt_solver_batch_env):
|
||||
# run goalset planning:
|
||||
q_start = trajopt_solver_batch_env.retract_config.repeat(3, 1)
|
||||
q_start = trajopt_solver_batch_env.retract_config.clone().repeat(3, 1)
|
||||
q_goal = q_start.clone()
|
||||
q_goal[0] += 0.1
|
||||
q_goal[1] -= 0.1
|
||||
@@ -262,7 +261,7 @@ def test_trajopt_batch_env_goalset(trajopt_solver_batch_env):
|
||||
|
||||
def test_trajopt_batch_env(trajopt_solver):
|
||||
# run goalset planning:
|
||||
q_start = trajopt_solver.retract_config.repeat(3, 1)
|
||||
q_start = trajopt_solver.retract_config.clone().repeat(3, 1)
|
||||
q_goal = q_start.clone()
|
||||
q_goal[0] += 0.1
|
||||
q_goal[1] -= 0.1
|
||||
|
||||
Reference in New Issue
Block a user