Add re-timing, minimum dt robustness

This commit is contained in:
Balakumar Sundaralingam
2024-04-25 12:24:17 -07:00
parent d6e600c88c
commit 7362ccd4c2
54 changed files with 4773 additions and 2189 deletions

View File

@@ -40,6 +40,24 @@ def motion_gen(request):
return motion_gen_instance
@pytest.fixture(scope="module")
def motion_gen_ur5e():
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "ur5e.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
interpolation_steps=10000,
interpolation_dt=0.05,
)
motion_gen_instance = MotionGen(motion_gen_config)
motion_gen_instance.warmup(warmup_js_trajopt=False, enable_graph=False)
return motion_gen_instance
@pytest.mark.parametrize(
"motion_gen",
[
@@ -66,3 +84,126 @@ def test_motion_gen_velocity_scale(motion_gen):
result = motion_gen.plan_single(start_state, goal_pose, m_config)
assert torch.count_nonzero(result.success) == 1
@pytest.mark.parametrize(
"velocity_scale, acceleration_scale",
[
(1.0, 1.0),
(0.75, 1.0),
(0.5, 1.0),
(0.25, 1.0),
(0.15, 1.0),
(0.1, 1.0),
(1.0, 0.1),
(0.75, 0.1),
(0.5, 0.1),
(0.25, 0.1),
(0.15, 0.1),
(0.1, 0.1),
],
)
def test_pose_sequence_speed_ur5e_scale(velocity_scale, acceleration_scale):
# load ur5e motion gen:
world_file = "collision_table.yml"
robot_file = "ur5e.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
interpolation_dt=(1.0 / 5.0),
velocity_scale=velocity_scale,
acceleration_scale=acceleration_scale,
)
motion_gen = MotionGen(motion_gen_config)
motion_gen.warmup(warmup_js_trajopt=False, enable_graph=False)
retract_cfg = motion_gen.get_retract_config()
start_state = JointState.from_position(retract_cfg.view(1, -1))
# poses for ur5e:
home_pose = [-0.431, 0.172, 0.348, 0, 1, 0, 0]
pose_1 = [0.157, -0.443, 0.427, 0, 1, 0, 0]
pose_2 = [0.126, -0.443, 0.729, 0, 0, 1, 0]
pose_3 = [-0.449, 0.339, 0.414, -0.681, -0.000, 0.000, 0.732]
pose_4 = [-0.449, 0.339, 0.414, 0.288, 0.651, -0.626, -0.320]
pose_5 = [-0.218, 0.508, 0.670, 0.529, 0.169, 0.254, 0.792]
pose_6 = [-0.865, 0.001, 0.411, 0.286, 0.648, -0.628, -0.321]
pose_list = [home_pose, pose_1, pose_2, pose_3, pose_4, pose_5, pose_6, home_pose]
trajectory = start_state
motion_time = 0
fail = 0
for i, pose in enumerate(pose_list):
goal_pose = Pose.from_list(pose, q_xyzw=False)
start_state = trajectory[-1].unsqueeze(0).clone()
start_state.velocity[:] = 0.0
start_state.acceleration[:] = 0.0
result = motion_gen.plan_single(
start_state.clone(),
goal_pose,
plan_config=MotionGenPlanConfig(
max_attempts=5,
),
)
if result.success.item():
plan = result.get_interpolated_plan()
trajectory = trajectory.stack(plan.clone())
motion_time += result.motion_time
else:
fail += 1
assert fail == 0
@pytest.mark.parametrize(
"motion_gen_str, time_dilation_factor",
[
("motion_gen_ur5e", 1.0),
("motion_gen_ur5e", 0.75),
("motion_gen_ur5e", 0.5),
("motion_gen_ur5e", 0.25),
("motion_gen_ur5e", 0.15),
("motion_gen_ur5e", 0.1),
("motion_gen_ur5e", 0.001),
],
)
def test_pose_sequence_speed_ur5e_time_dilation(motion_gen_str, time_dilation_factor, request):
# load ur5e motion gen:
motion_gen = request.getfixturevalue(motion_gen_str)
retract_cfg = motion_gen.get_retract_config()
start_state = JointState.from_position(retract_cfg.view(1, -1))
# poses for ur5e:
home_pose = [-0.431, 0.172, 0.348, 0, 1, 0, 0]
pose_1 = [0.157, -0.443, 0.427, 0, 1, 0, 0]
pose_2 = [0.126, -0.443, 0.729, 0, 0, 1, 0]
pose_3 = [-0.449, 0.339, 0.414, -0.681, -0.000, 0.000, 0.732]
pose_4 = [-0.449, 0.339, 0.414, 0.288, 0.651, -0.626, -0.320]
pose_5 = [-0.218, 0.508, 0.670, 0.529, 0.169, 0.254, 0.792]
pose_6 = [-0.865, 0.001, 0.411, 0.286, 0.648, -0.628, -0.321]
pose_list = [home_pose, pose_1, pose_2, pose_3, pose_4, pose_5, pose_6, home_pose]
trajectory = start_state
motion_time = 0
fail = 0
for i, pose in enumerate(pose_list):
goal_pose = Pose.from_list(pose, q_xyzw=False)
start_state = trajectory[-1].unsqueeze(0).clone()
start_state.velocity[:] = 0.0
start_state.acceleration[:] = 0.0
result = motion_gen.plan_single(
start_state.clone(),
goal_pose,
plan_config=MotionGenPlanConfig(
max_attempts=5,
time_dilation_factor=time_dilation_factor,
),
)
if result.success.item():
plan = result.get_interpolated_plan()
trajectory = trajectory.stack(plan.clone())
motion_time += result.motion_time
else:
fail += 1
assert fail == 0
assert motion_time < 15 * (1 / time_dilation_factor)