Add re-timing, minimum dt robustness

This commit is contained in:
Balakumar Sundaralingam
2024-04-25 12:24:17 -07:00
parent d6e600c88c
commit 7362ccd4c2
54 changed files with 4773 additions and 2189 deletions

View File

@@ -209,7 +209,6 @@ def load_curobo(
collision_activation_distance=collision_activation_distance,
trajopt_dt=0.25,
finetune_dt_scale=finetune_dt_scale,
maximum_trajectory_dt=0.15,
high_precision=args.high_precision,
)
mg = MotionGen(motion_gen_config)
@@ -296,7 +295,6 @@ def benchmark_mb(
enable_graph_attempt=1,
disable_graph_attempt=10,
enable_finetune_trajopt=not args.no_finetune,
partial_ik_opt=False,
enable_graph=graph_mode or force_graph,
timeout=60,
enable_opt=not graph_mode,
@@ -572,6 +570,7 @@ def benchmark_mb(
if not args.kpi:
try:
# Third Party
from tabulate import tabulate
headers = ["Metric", "Value"]
@@ -604,6 +603,7 @@ def benchmark_mb(
g_m = CuroboGroupMetrics.from_list(all_files)
try:
# Third Party
from tabulate import tabulate
headers = ["Metric", "Value"]

View File

@@ -11,6 +11,7 @@
# Standard Library
import argparse
import time
from copy import deepcopy
from typing import Optional
@@ -24,7 +25,8 @@ from robometrics.datasets import demo_raw, motion_benchmaker_raw, mpinets_raw
from tqdm import tqdm
# CuRobo
from curobo.geom.sdf.world import CollisionCheckerType, WorldConfig
from curobo.geom.sdf.world import CollisionCheckerType, WorldCollisionConfig, WorldConfig
from curobo.geom.sdf.world_blox import WorldBloxCollision
from curobo.geom.types import Cuboid as curobo_Cuboid
from curobo.geom.types import Mesh
from curobo.types.base import TensorDeviceType
@@ -35,6 +37,7 @@ from curobo.types.state import JointState
from curobo.util.logger import setup_curobo_logger
from curobo.util.metrics import CuroboGroupMetrics, CuroboMetrics
from curobo.util_file import (
file_exists,
get_assets_path,
get_robot_configs_path,
get_world_configs_path,
@@ -130,8 +133,10 @@ def load_curobo(
):
robot_cfg = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))["robot_cfg"]
robot_cfg["kinematics"]["collision_sphere_buffer"] = 0.0
robot_cfg["kinematics"]["collision_link_names"].remove("attached_object")
robot_cfg["kinematics"]["ee_link"] = "panda_hand"
ik_seeds = 30
ik_seeds = 32
if graph_mode:
trajopt_seeds = 4
if trajopt_seeds >= 14:
@@ -147,11 +152,30 @@ def load_curobo(
"world": {
"pose": [0, 0, 0, 1, 0, 0, 0],
"integrator_type": "tsdf",
"voxel_size": 0.02,
"voxel_size": 0.01,
}
}
}
)
world_nvblox_config = WorldCollisionConfig.load_from_dict(
{"cache": None, "checker_type": "BLOX"},
world_cfg,
TensorDeviceType(),
)
world_nvblox = WorldBloxCollision(world_nvblox_config)
world_cfg = WorldConfig.from_dict(
{
"voxel": {
"base": {
"dims": [2.4, 2.4, 2.4],
"pose": [0, 0, 0, 1, 0, 0, 0],
"voxel_size": 0.005,
"feature_dtype": torch.float8_e4m3fn,
},
}
}
)
interpolation_steps = 2000
if graph_mode:
interpolation_steps = 100
@@ -164,7 +188,7 @@ def load_curobo(
robot_cfg_instance,
world_cfg,
trajopt_tsteps=tsteps,
collision_checker_type=CollisionCheckerType.BLOX,
collision_checker_type=CollisionCheckerType.VOXEL,
use_cuda_graph=cuda_graph,
position_threshold=0.005, # 0.5 cm
rotation_threshold=0.05,
@@ -177,7 +201,6 @@ def load_curobo(
interpolation_steps=interpolation_steps,
collision_activation_distance=collision_activation_distance,
trajopt_dt=0.25,
finetune_dt_scale=0.9,
maximum_trajectory_dt=0.15,
finetune_trajopt_iters=200,
)
@@ -188,12 +211,15 @@ def load_curobo(
robot_cfg_instance,
"collision_table.yml",
collision_activation_distance=0.0,
collision_checker_type=CollisionCheckerType.PRIMITIVE,
collision_checker_type=CollisionCheckerType.MESH,
n_cuboids=50,
n_meshes=50,
)
mg.clear_world_cache()
robot_world = RobotWorld(config)
robot_world.clear_world_cache()
return mg, robot_cfg, robot_world
return mg, robot_cfg, robot_world, world_nvblox
def benchmark_mb(
@@ -208,7 +234,7 @@ def benchmark_mb(
# load dataset:
graph_mode = args.graph
interpolation_dt = 0.02
file_paths = [demo_raw, motion_benchmaker_raw, mpinets_raw][1:2]
file_paths = [demo_raw, motion_benchmaker_raw, mpinets_raw][2:]
enable_debug = save_log or plot_cost
all_files = []
@@ -216,8 +242,9 @@ def benchmark_mb(
if override_tsteps is not None:
og_tsteps = override_tsteps
og_trajopt_seeds = 12
og_collision_activation_distance = 0.03 # 0.03
og_trajopt_seeds = 4
og_collision_activation_distance = 0.025
count = [0, 0, 0, 0]
if args.graph:
og_trajopt_seeds = 4
for file_path in file_paths:
@@ -228,6 +255,7 @@ def benchmark_mb(
for key, v in tqdm(problems.items()):
scene_problems = problems[key]
m_list = []
count[3] += 1
i = -1
ik_fail = 0
trajopt_seeds = og_trajopt_seeds
@@ -236,32 +264,7 @@ def benchmark_mb(
if "dresser_task_oriented" in list(problems.keys()):
mpinets_data = True
if "cage_panda" in key:
trajopt_seeds = 8
else:
continue
if "table_under_pick_panda" in key:
tsteps = 44
trajopt_seeds = 16
finetune_dt_scale = 0.98
if "cubby_task_oriented" in key and "merged" not in key:
trajopt_seeds = 24
finetune_dt_scale = 0.95
collision_activation_distance = 0.035
if "dresser_task_oriented" in key:
trajopt_seeds = 24
finetune_dt_scale = 0.95
collision_activation_distance = 0.035 # 0.035
if "merged_cubby_task_oriented" in key:
collision_activation_distance = 0.025 # 0.035
if "tabletop_task_oriented" in key:
collision_activation_distance = 0.025 # 0.035
if key in ["dresser_neutral_goal"]:
trajopt_seeds = 24
collision_activation_distance = og_collision_activation_distance
mg, robot_cfg, robot_world = load_curobo(
mg, robot_cfg, robot_world, world_nvblox = load_curobo(
1,
enable_debug,
tsteps,
@@ -280,7 +283,6 @@ def benchmark_mb(
max_attempts=10,
enable_graph_attempt=1,
enable_finetune_trajopt=True,
partial_ik_opt=False,
enable_graph=graph_mode,
timeout=60,
enable_opt=not graph_mode,
@@ -298,14 +300,60 @@ def benchmark_mb(
mg.reset(reset_seed=False)
world = WorldConfig.from_dict(problem["obstacles"])
mg.world_coll_checker.clear_cache()
mg.world_coll_checker.update_blox_hashes()
world_nvblox.clear_cache()
world_nvblox.update_blox_hashes()
mg.clear_world_cache()
save_path = "benchmark/log/nvblox/" + key + "_" + str(i)
save_path = "benchmark/log/nvblox_640_new/" + key + "_" + str(i)
save_path = (
"/home/bala/code/raven_internship/data/render_mpinets_640/reformat/"
+ key
+ "_"
+ str(i)
)
# save_path = "/home/bala/code/raven_internship/data/render_26k/_0_8/reformat/" + key + "_" + str(i)
if not file_exists(save_path):
continue
m_dataset = Sun3dDataset(save_path)
tensor_args = mg.tensor_args
if i == 0:
for j in tqdm(range(min(10, len(m_dataset))), leave=False):
data = m_dataset[j]
cam_obs = CameraObservation(
rgb_image=tensor_args.to_device(data["rgba"])
.squeeze()
.to(dtype=torch.uint8)
.permute(1, 2, 0), # data[rgba]: 4 x H x W -> H x W x 4
depth_image=tensor_args.to_device(data["depth"]),
intrinsics=data["intrinsics"],
pose=Pose.from_matrix(data["pose"].to(device=mg.tensor_args.device)),
)
cam_obs = cam_obs
torch.cuda.synchronize()
st_int_time = time.time()
world_nvblox.add_camera_frame(cam_obs, "world")
torch.cuda.synchronize()
world_nvblox.process_camera_frames("world", False)
torch.cuda.synchronize()
world_nvblox.update_blox_hashes()
# get esdf grid:
esdf = world_nvblox.get_esdf_in_bounding_box(
curobo_Cuboid(
name="base", pose=[0, 0, 0, 1, 0, 0, 0], dims=[2.4, 2.4, 2.4]
),
voxel_size=0.005,
dtype=torch.float32,
)
mg.world_coll_checker.update_voxel_data(esdf)
world_nvblox.clear_cache()
world_nvblox.update_blox_hashes()
mg.clear_world_cache()
int_time = 0
for j in tqdm(range(min(1, len(m_dataset))), leave=False):
data = m_dataset[j]
cam_obs = CameraObservation(
@@ -318,18 +366,26 @@ def benchmark_mb(
pose=Pose.from_matrix(data["pose"].to(device=mg.tensor_args.device)),
)
cam_obs = cam_obs
mg.add_camera_frame(cam_obs, "world")
mg.process_camera_frames("world", False)
torch.cuda.synchronize()
st_int_time = time.time()
world_nvblox.add_camera_frame(cam_obs, "world")
torch.cuda.synchronize()
int_time += time.time() - st_int_time
st_time = time.time()
world_nvblox.process_camera_frames("world", False)
torch.cuda.synchronize()
mg.world_coll_checker.update_blox_hashes()
torch.cuda.synchronize()
# if i > 2:
# mg.world_coll_checker.clear_cache()
# mg.world_coll_checker.update_blox_hashes()
world_nvblox.update_blox_hashes()
# mg.world_coll_checker.save_layer("world", "test.nvblx")
# get esdf grid:
esdf = world_nvblox.get_esdf_in_bounding_box(
curobo_Cuboid(name="base", pose=[0, 0, 0, 1, 0, 0, 0], dims=[2.4, 2.4, 2.4]),
voxel_size=0.005,
dtype=torch.float32,
)
mg.world_coll_checker.update_voxel_data(esdf)
torch.cuda.synchronize()
perception_time = time.time() - st_time + int_time
start_state = JointState.from_position(mg.tensor_args.to_device([q_start]))
result = mg.plan_single(
@@ -372,6 +428,31 @@ def benchmark_mb(
),
log_scale=False,
)
if save_log or write_usd:
world.randomize_color(r=[0.5, 0.9], g=[0.2, 0.5], b=[0.0, 0.2])
# nvblox_obs = world_nvblox.get_mesh_from_blox_layer(
# "world",
# )
# nvblox_obs.vertex_colors = None
# if nvblox_obs.vertex_colors is not None:
# nvblox_obs.vertex_colors = nvblox_obs.vertex_colors.cpu().numpy()
# else:
# nvblox_obs.color = [0.0, 0.0, 0.8, 0.8]
# nvblox_obs.name = "nvblox_mesh_world"
# world.add_obstacle(nvblox_obs)
coll_mesh = mg.world_coll_checker.get_mesh_in_bounding_box(
curobo_Cuboid(name="new_test", pose=[0, 0, 0, 1, 0, 0, 0], dims=[2, 2, 2]),
voxel_size=0.01,
)
coll_mesh.color = [0.0, 0.8, 0.8, 0.8]
coll_mesh.name = "nvblox_voxel_world"
world.add_obstacle(coll_mesh)
if result.success.item():
q_traj = result.get_interpolated_plan()
problem["goal_ik"] = q_traj.position.cpu().squeeze().numpy()[-1, :].tolist()
@@ -425,10 +506,10 @@ def benchmark_mb(
"valid_query": result.valid_query,
}
problem["solution_debug"] = debug
world_coll = WorldConfig.from_dict(problem["obstacles"]).get_obb_world()
world_coll = WorldConfig.from_dict(problem["obstacles"]).get_mesh_world()
# check if path is collision free w.r.t. ground truth mesh:
# robot_world.world_model.clear_cache()
robot_world.world_model.clear_cache()
robot_world.update_world(world_coll)
q_int_traj = result.get_interpolated_plan().position.unsqueeze(0)
@@ -448,6 +529,9 @@ def benchmark_mb(
# if not d_mask:
# write_usd = True
# #print(torch.max(d_world).item(), problem_name)
if d_int_mask:
count[0] += 1
current_metrics = CuroboMetrics(
skip=False,
success=True,
@@ -465,37 +549,11 @@ def benchmark_mb(
motion_time=result.motion_time.item(),
solve_time=result.solve_time,
jerk=torch.max(torch.abs(result.optimized_plan.jerk)).item(),
perception_time=perception_time,
)
if save_log or write_usd:
world.randomize_color(r=[0.5, 0.9], g=[0.2, 0.5], b=[0.0, 0.2])
nvblox_obs = mg.world_coll_checker.get_mesh_from_blox_layer(
"world",
)
# nvblox_obs.vertex_colors = None
if nvblox_obs.vertex_colors is not None:
nvblox_obs.vertex_colors = nvblox_obs.vertex_colors.cpu().numpy()
else:
nvblox_obs.color = [0.0, 0.0, 0.8, 0.8]
nvblox_obs.name = "nvblox_mesh_world"
world.add_obstacle(nvblox_obs)
coll_mesh = mg.world_coll_checker.get_mesh_in_bounding_box(
curobo_Cuboid(
name="test", pose=[0, 0, 0, 1, 0, 0, 0], dims=[1.5, 1.5, 1]
),
voxel_size=0.005,
)
coll_mesh.color = [0.0, 0.8, 0.8, 0.8]
coll_mesh.name = "nvblox_voxel_world"
world.add_obstacle(coll_mesh)
# run planner
if write_usd:
if write_usd and not d_mask:
# CuRobo
from curobo.util.usd_helper import UsdHelper
@@ -512,7 +570,7 @@ def benchmark_mb(
robot_usd_local_reference="assets/",
base_frame="/world_" + problem_name,
visualize_robot_spheres=True,
# flatten_usd=True,
flatten_usd=True,
)
# write_usd = False
# exit()
@@ -537,7 +595,9 @@ def benchmark_mb(
m_list.append(current_metrics)
all_groups.append(current_metrics)
count[1] += 1
elif result.valid_query:
count[1] += 1
current_metrics = CuroboMetrics()
debug = {
"used_graph": result.used_graph,
@@ -555,6 +615,7 @@ def benchmark_mb(
m_list.append(current_metrics)
all_groups.append(current_metrics)
else:
count[2] += 1
# print("invalid: " + problem_name)
debug = {
"used_graph": result.used_graph,
@@ -583,7 +644,7 @@ def benchmark_mb(
write_trajopt=True,
visualize_robot_spheres=True,
grid_space=2,
# flatten_usd=True,
flatten_usd=True,
)
exit()
g_m = CuroboGroupMetrics.from_list(m_list)
@@ -599,6 +660,7 @@ def benchmark_mb(
g_m.cspace_path_length.percent_98,
g_m.motion_time.percent_98,
g_m.perception_interpolated_success,
g_m.perception_time.mean,
# g_m.orientation_error.median,
)
print(g_m.attempts)
@@ -633,6 +695,7 @@ def benchmark_mb(
print("ST: ", g_m.solve_time)
print("accuracy: ", g_m.position_error, g_m.orientation_error)
print("Jerk: ", g_m.jerk)
print(count)
if __name__ == "__main__":

View File

@@ -185,7 +185,7 @@ def load_curobo(
finetune_trajopt_iters=200,
)
mg = MotionGen(motion_gen_config)
mg.warmup(enable_graph=True, warmup_js_trajopt=False, parallel_finetune=True)
mg.warmup(enable_graph=True, warmup_js_trajopt=False)
# create a ground truth collision checker:
world_model = WorldConfig.from_dict(
{
@@ -305,6 +305,7 @@ def benchmark_mb(
voxel_size=0.005,
dtype=torch.float32,
)
# esdf.feature_tensor[esdf.feature_tensor < -1.0] = -1000.0
world_voxel_collision = mg.world_coll_checker
world_voxel_collision.update_voxel_data(esdf)
@@ -578,6 +579,7 @@ def benchmark_mb(
print(g_m.attempts)
g_m = CuroboGroupMetrics.from_list(all_groups)
try:
# Third Party
from tabulate import tabulate
headers = ["Metric", "Value"]
@@ -611,6 +613,7 @@ def benchmark_mb(
g_m = CuroboGroupMetrics.from_list(all_files)
print("######## FULL SET ############")
try:
# Third Party
from tabulate import tabulate
headers = ["Metric", "Value"]

View File

@@ -36,7 +36,7 @@ np.random.seed(0)
def generate_images():
# load dataset:
file_paths = [demo_raw, motion_benchmaker_raw, mpinets_raw][1:]
file_paths = [demo_raw, motion_benchmaker_raw, mpinets_raw][1:2]
for file_path in file_paths:
problems = file_path()
@@ -57,7 +57,7 @@ def generate_images():
# generate images and write to disk:
MeshDataset(
None, n_frames=50, image_size=640, save_data_dir=save_path, trimesh_mesh=mesh
None, n_frames=1, image_size=640, save_data_dir=save_path, trimesh_mesh=mesh
)

View File

@@ -185,6 +185,7 @@ if __name__ == "__main__":
print("Reported errors are 98th percentile")
df.to_csv(join_path(args.save_path, args.file_name + ".csv"))
try:
# Third Party
from tabulate import tabulate
print(tabulate(df, headers="keys", tablefmt="grid"))